HOCHSCHULE ©
ANSBACH

Fakultat Medien

Making Procedurally Generated
Levels in Top-Down Games Seem
More Handcrafted

Bachelorarbeit im Studiengang Visualisierung und Interaktion

in digitalen Medien

vorgelegt von

Danny Karim Sehili

Matrikelnummer 00154863

Erstgutachter: Prof. Florian Machill

Zweitgutachter: Prof. Dr.-Ing. Helmut Roderus

©2023

Dieses Werk einschliefflich seiner Teile ist urheberrechtlich geschiitzt. Jede Verwertung
auferhalb der engen Grenzen des Urheberrechtgesetzes ist ohne Zustimmung des Autors un-
zuliissig und strafbar. Das gilt insbesondere fiir Vervielfialtigungen, Ubersetzungen, Mikrover-
filmungen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

Declaration

,1 confirm that I have written this thesis unaided and without using sources other than
those listed and that this thesis has never been submitted to another examination au-
thority and accepted as part of an examination achievement, neither in this form nor
in a similar form. All content that was taken from a third party either verbatim or in

substance has been acknowledged as such.”

Ort, Datum Unterschrift

ii

Abstract

This bachelor thesis investigates methods to enhance the handcrafted quality of proce-
durally generated levels in top-down games, focusing on dungeons. The study begins
with an overview of procedural generation in general. It follows with an analysis of
handcrafted levels, identifying key elements that contribute to their quality. Procedu-
ral generation methods are then explored to find techniques that can replicate these
characteristics. Based on the findings, a mixed-initiative level generator is developed,
incorporating the identified elements through utilizing the procedural generation meth-
ods. The generator’s output is evaluated for its similarity to handcrafted levels and
the presence of handcrafted characteristics. The results demonstrate that the proposed
approach successfully enhances the handcrafted quality of procedurally generated top-

down levels, contributing to more engaging gameplay experiences.

iii

Contents

1 Introduction

1.1 Top-Down Games
1.2 Procedural Content Generation in Top Down Games
1.3 Thesis Structure

An Overview of Procedural Content Generation in Video Games

2.1 Generator Properties L
2.1.1 Online or Offine
2.1.2 Seeds or Paramater Vectors
2.1.3 Stochastic or Deterministic
2.1.4 Constructive or Generate-and-test
2.1.5 Automatic or Mixed-Initiative
2.1.6 Generic or Adaptive

2.2 Procedural Generation Techniques
2.2.1 Search-Based
222 Grammars
2.2.3 Constructive
2.2.4 Constraint-Based oL

2.3 Strengths and Weaknesses of PCG
2.3.1 Strengths of PCG
2.3.2 Weaknesses of PCG,

Defining What Makes a Level Handcrafted

3.1 Dungeons in The Legend of Zelda
3.1.1 Dormans” Analysis L.
3.1.2 Stout’s Analysis

3.2 Level Flow.
3.2.1 Difficulty Scaling
3.2.2 Difficulty Breathing
3.2.3 Objective-Challenge-Reward

3.3 Patterns in Level Design 0oL
3.3.1 Gamespaces
3.3.2 Encouraging Exploration L.

v

W N NN

e e e e e NG G G N N

10

CONTENTS

3.3.3 Using Player Emotion 18
3.3.4 Balancing Risk and Reward 19
3.3.5 Object Structure & Object Purpose 19
3.3.6 Giving the Player Hints 21

4 Procedural Generation Methods to Generate Seemingly Handcrafted

Levels 23
4.1 Vertical Handcrafted Integration 23
4.1.1 Case Study: Faster Than Light 23
4.1.2 Case Study: Spelunky’s Secret Puzzle 24
4.1.3 Game Forge 24
4.1.4 Conclusion 24

4.2 Horizontal Handcrafted Integration 25
4.2.1 Case Study: Dungeon Crawl Stone Soup 25
4.2.2 Case Study: Spelunky’s Dungeon Patterns 25
4.2.3 Case Study: Dungeonmans 26
424 Conclusion 27

4.3 Grammarso e e e 28
4.3.1 Mission Generation L. 28
4.3.2 Space Generation 29
4.3.3 Combining Mission and Space 30
4.3.4 Lock and Key Mechanisms 31
4.3.5 Cyclic Generation 32
4.3.6 Conclusion 34

5 Generator Concept 36
5.1 Grid Generation 36
52 Level Seed 36
5.3 Grammar Generation L 37
5.4 Alphabet 37
5.0 Rules. 37
5.5.1 Pattern Seeds 38
5.5.2 Seed Dimensions 38
5.5.3 Tiles Information, 38
5.5.4 Numbering Seeds 39

5.6 Seed Setup 39
5.7 Mission 39
5.7.1 Room Mission Symbols L. 40
5.7.2 Generator Mission Symbols 40

5.8 Room Evolution 40
5.9 Rules Application 41

CONTENTS

5.9.1 Pattern Detection, 41

5.9.2 Replacement Check 41
5.9.3 Pattern Replacement, 41

5.10 Level Buildingo 42
6 The Humanized Level 43
6.1 Game Concept 43
6.1.1 Game Dimension 43

6.1.2 Camera Perspective 44

6.1.3 Player Character, . 44
6.1.4 Locksand Keys 44
6.1.5 Ttems 44
6.1.6 Enemies 45

6.1.7 Rewards 45

6.1.8 Boss 45

6.2 Level Concept 45
6.2.1 Alphabet 45

6.2.2 Mission Symbols oo 47
6.2.3 Rules 49
6.2.4 Level Runthrough 51
6.2.5 Applied Humanization Techniques 53

6.3 Evaluation. 55
6.3.1 Non-humanized Level 5}
6.3.2 Evaluation Method 56
6.3.3 Evaluation Results Y4

6.4 Discussion 58
7 Conclusion & Future Work 60
7.1 Conclusion. 60
7.2 Future Work 60

vi

List of Figures

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3
4.4
4.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Mission and Space (Dormans, 2010) 13
Prospects and refuges in The Legend of Zelda: A Link to the Past
(Nintendo, 1991) (Rick N. Bruns, 2019b) 17

A dark maze with invincible enemies in The Legend of Zelda: A Link
to the Past (Nintendo, 1991) (SweetJohnnyCage - Narrated Guides &
Walkthroughs, 2020) 18
A dark maze with invincible enemies in The Legend of Zelda: A Link
to the Past (Nintendo, 1991) (SweetJohnnyCage - Narrated Guides &
Walkthroughs, 2020) 18
The player gets rewarded after finding their way out of the maze in
The Legend of Zelda: A Link to the Past (Nintendo, 1991) (SweetJohn-

nyCage - Narrated Guides & Walkthroughs, 2020) 19
Symmetric object structures in The Legend of Zelda: A Link to the Past
(Nintendo, 1991) (Rick N. Bruns, 2019d; Rick N. Bruns, 2019¢) 20
Enemies protecting items from the player in The Legend of Zelda: A
Link to the Past (Nintendo, 1991) (Rick N. Bruns, 2019d) 21
A dark maze with invincible enemies in The Legend of Zelda: A Link
to the Past (Nintendo, 1991)(Rick N. Bruns, 2019d) 22

Seed data for dungeons in Dungeonmans (Adventurepro Games LLC,

2014) (Short and Adams, 2017, p. 64) 26
Seed data for crypts in Dungeonmans (Adventurepro Games LLC, 2014)

(Short and Adams, 2017, p. 67) 27
Graph grammar rule to generate missions (Dormans, 2010) 29

Shape grammar alphabet and rules to generate space (Dormans, 2010) 30

Graph grammar rules used in unexplored (Short and Adams, 2017, p. 90) 33

Part of the designed grammar alphabet A7
Part of the designed mission sequence 49
A rule to place a small exploration room 50
Humanized level o 51
Maze that leads to the sword 52
Key, protected by enemies 52
Bossroomo 53

vii

LIST OF FIGURES

6.8 Non-humanized level H6

Vviil

Chapter 1

Introduction

In the world of video games, it is hard not to come across the term “procedural content
generation” (PCG). One of the first uses of PCG was in 1980 in the game Rogue (Epyx,
1980) (Hendrikx et al., 2013, p. 14), where a dungeon had been randomly generated
(Green, 2016, p. 16). Green (2016) explains that the concept of procedural generation
itself does not necessarily involve randomness, but the use of randomness is usually
expected to vary the generated results (p. 2). The concept of procedural generation
is not only used in a variety of contexts, but also describes a lot of different processes
(Shaker et al., 2016). The term describes something that has been created by one or
multiple algorithms, without having been there before (Green, 2016, p. 1). Including
terrain, characters, architecture, stories, objects like weapons (Togelius et al., 2010)
and even textures, sounds and animations (Green, 2016, pp. 12-13), almost everything
seems possible to be procedurally generated. Taking procedural content generation
to an extreme, you could even create a generator that creates an entire game, with
procedurally generated mechanics and rules (Kate Compton, 2017). Recent research
in the field of PCG also does not only utilize machine learning (Gutierrez and Schrum,
2020), but also trains them to cooperate with human designers (Zhou and Guzdial,
2021) to be even more efficient in generating content.

With PCG being heavily reliant randomness however, it is conclusive that the level
design itself might lack intention, concept, and even meaning in general. Short and
Adams (2017) state that a game having this exact issue is No Man’s Sky (Hello Games,
Sony Interactive Entertainment, 2016) (p. 8), which creates entire universes with
planets and even the living beings inhabiting them. However, this strong reliance on
procedural content generation resulted in a lack of gameplay (Short and Adams, 2017,
p. 8).

To find a solution to this problem, the aim of this research is to find a way to create a
procedural level generator that generates levels that appear as if they had been made
by hand or could even be mistaken as such, resulting in levels possessing the qualities
of good level design, which will be done in the context of games in the top-down view.
To achieve this, ways to control the randomness of the generation process, which Green
(2016) claim is the key to procedural generation that is based on randomness (p. 10),

will be researched. In the field of PCG, much research has been done focusing on

Chapter 1 — Introduction

improving different qualities of generated levels (Dormans, 2010; Short and Adams,
2017; Totten, 2017), but not much research has been done about generating levels with
the goal of them being mistaken for a handcrafted one. This thesis will aim to combine

the existing research to achieve that goal.

1.1 Top-Down Games

The top-down view is a camera orientation that shows players the game world from
above their avatar (Totten, 2014, p. 151). Totten (2014) describe it as “looking at a
building plan” (Totten, 2014, p. 151). This separates the view of the player and their
character, different from other perspectives, like the first-person view or third-person
view. Totten (2014) mention a main difference that results from this separation, which
is the ability of games using the top-down view to show the player things their avatar
cannot see, for example if a wall is blocking the view (p. 152). Totten add that the
top-down view can effectively produce gameplay that, first, is based on players needing
to adjust their position to line up their attacks with their target (p. 152) and, second,
is less demanding of the player’s ability to react fast (p. 152).

The top-down has been around for quite a long time and has already been used in
famous games like Pong (Atari, 1972), which came out in 1972. It has been popular
for many RPG games like Earth Bound (Nintendo, 1994) or The Legend of Zelda.
The top-down perspective is also the main domain of games of the roguelike genre, a
genre where the player explores a randomly generated dungeon, starting inside a new
dungeon every time they die (Epyx, 1980; Devolver Digital, 2016; Edmund McMillen,
2011), thus tieing the top-down view to the dungeon level-type. The reason why most
roguelike games are displayed in top-down view is that the game Rogue (Epyx, 1980),
which defined the entire roguelike genre (Green, 2016, p. 16), was also a game in

top-down view.

1.2 Procedural Content Generation in Top Down Games

Rogue (Epyx, 1980) not only inspired a genre around navigating the player through a
dungeon in top down view, but also the use of procedurally generating the dungeons in
this genre. Since then, numerous roguelike games, like Diablo (Blizzard Entertainment,
1996) or The Binding of Isaac (Edmund McMillen, 2011) have been made (Green, 2016,
p. 16), closely following Rogue’s style of sending the player into a randomly generated
dungeon displayed in a top-down view. Due to this, procedural level generation seems
to not only be tightly connected to roguelike games in general but also to the top-down

dungeon space.

Chapter 1 — Introduction

1.3 Thesis Structure

To achieve the goal of creating seemingly handcrafted top-down levels, in chapter 2, it
will first be made research about the field of procedural content generation in general,
to become familiar with the topic. This will cover properties of procedural genera-
tors, common methods to generate content and the strengths and weaknesses of using
procedural generation.

In chapter 3, it will be defined what makes a level handcrafted or generated, first
covering the structure that is found in handcrafted dungeons. Additionally, it will be
taken a look at level design patterns and techniques commonly used in professional
level design of handcrafted games, presenting ones that would be useful to generate
seemingly handcrafted levels.

In chapter 4, it will be taken a look at procedural generation methods and games
that allow enough control to implemented the findings of chapter 3, or are already
implementing them in their generation.

Chapter 5 will cover the generator that has been conceptualized and created, resulting
from the combination of the research done in chapter 3 and chapter 4, presenting
the concept of the generator, the methods that have been used and the level design
patterns that have been implemented in the generation process and the conceptualized
top-down game the generator is based on.

Chapter 6 will present an example level that has been generated with the level gener-
ator, subsequently covering the evaluation of that level through moderated user tests

and discussing its results.

Chapter 2

An Overview of Procedural Content Generation in Video
(Games

2.1 Generator Properties

The topic of procedural content generation is vast. This makes it important to distin-
guish between the several different types of procedural generation concepts that can
be implemented in a piece of software. To get a better understanding of procedural
generation and the ways it can be used, it is necessary to become familiar with the
terminology used within the field and the different types of procedural generators it

describes.

2.1.1 Online or Offline

Togelius et al. (2010) explain how the use of a generator, or the generator itself, can
be classified as online or offline. They further explain that when talking about on-
line generation in video games, one is talking about a game that will generate new
content at runtime, for example, by creating new levels or worlds every time a new
game is started. Examples for this would be the roguelike games The Binding of Isaac
(Edmund McMillen, 2011) or Enter the Gungeon (Devolver Digital, 2016). Like their
genre already suggests, in both of these games, one explores the depths of a gener-
ated dungeon, with a new dungeon being generated every time a new playthrough is
started. Other game genres, like the more sandbox-esque open-world survival games
like Minecraft (Mojang, 2008) or Terraria (Re-Logic 505 Games, 2011) that generate
entire worlds at runtime, are also excellent examples of the use of online generation.
Offline generation, on the other hand, creates the content not during the game itself,
but instead during its development (Togelius et al., 2010). Short and Adams (2017)
mention that developers can use offline generation to generate larger segments of a huge
travellable map (p. 4). They add that, additionally, these generated map segments
can be modified and rearranged by human developers by hand (p. 4).

Chapter 2 — An Overview of Procedural Content Generation in Video Games

2.1.2 Seeds or Paramater Vectors

According to Togelius et al. (2010), another property used to differentiate between pro-
cedural generation algorithms, is the scope in which their output can be manipulated.
They state that there are two different approaches. One approach, they describe, is
based on the concept of being solely controlled by one input value, which is referred to
as a seed. These seeds, most of the time, will be represented by a number or a string
of letters (Short and Adams, 2017, p. 273). Although dependent on the algorithm,
in many of them, using the same seed in multiple separate processes of generation,
will always give the exact same output (Green, 2016, pp. 7-8). Coming back to the
examples for online generation, games like Minecraft (Mojang, 2008) or The Binding
of Isaac (Edmund McMillen, 2011) not only generate their content based on seeds, but
also let their players enter one to replay or share worlds.

Togelius et al. (2010) describe that the second popular approach used to controlling a
generators output are parameter vectors, which are vectors that allow multiple values

for different properties affecting the generation process.

2.1.3 Stochastic or Deterministic

Togelius et al. (2010) report that another impactful trait you can categorize procedural
generation algorithms by is whether they are stochastic or deterministic. They explain
that while deterministic generators return the same content when using the same input
values, the output of a stochastic one will still differ, despite the use of identical input
values.

As already mentioned in section 1, most generators are based on randomness. How-
ever, with games like Minecraft (Mojang, 2008), this randomness only comes from the
randomly chosen seed, while the seed itself produces the same outcome every time,

making the generator deterministic.

2.1.4 Constructive or Generate-and-test

Togelius et al. (2010) make a distinction not only by how a generator generates but also
by how often they generate. They explain that first, there is constructive generation,
which will generate content only once. They deliver good content right away, which
leads to not only shorter but also very consistent generation times (Shaker et al., 2016,
p. 31).

Togelius et al. (2010) further explain that there is also generate-and-test generation.
As the name suggests, these generators do not only generate but also evaluate the
generated content (Togelius et al., 2010). Togelius et al. (2010) state that this happens
with the usage of some sort of evaluation function, which will rate the generated content
by specified criteria and determine if it is of acceptable quality. If it is not, the content

will be discarded and a new instance will be generated. This process is repeated until

Chapter 2 — An Overview of Procedural Content Generation in Video Games

the generator creates an instance that is labeled as being of high enough quality by the

evaluation function.

2.1.5 Automatic or Mixed-Initiative

The traditional, fully automatic use of PCG limits designers in their control about
the generated outcome, only giving control about input parameters (Shaker et al.,
2016, p. 10). Shaker et al. (2016) explain that at some point a new approach, called
“mixed-initiative”, has been developed, which involves designers much more, allowing
algorithm and human to work together more efficiently (p. 10). An example of this
is the mixed-initiative tool Tanagra, which generates a 2D-platformer level around

sections manually designed by a human (Smith et al., 2010).

2.1.6 Generic or Adaptive

Shaker et al. (2016) describe that there are adaptive generators that take the player’s
behaviour into account, subsequently adapting the generation process, which generic
generators do not (pp. 8-9). They mention that adaptive generators can be used to

adjust the difficulty or generate content that the player seems to prefer (pp. 8-9).

2.2 Procedural Generation Techniques

Since PCG has been around for quite a while, it accordingly had lots of time to develop
since its first use (Shaker et al., 2016; Short and Adams, 2017). In this section, it will

now be taken a closer look at common generation techniques.

2.2.1 Search-Based

Also known as optimization-based (Sturtevant et al., 2015), search-based procedural
content generation is a type of generation of the generate-and-test category (Togelius
et al., 2010).

Togelius et al. (2010) describes two defining properties of a search-based approach.
First, contrary to the general concept of generate-and-test, search-based PCG does
not ultimately accept or reject the generated instances, but instead give them fitness-
level. This fitness-level works as a grade and is determined by a fitness function.
Second, every new generated instance is dependent of the fitness-grade assigned to its
predecessor, with the goal of producing content ascending in fitness. For the successful
production of content instances that possess the necessary features, it is typical to use

an evolutionary algorithm (Short and Adams, 2017).

2.2.2 Grammars

Formal grammars are another popular tool for generating content. Even though they

even though they were originally introduced in the field of linguistics, they also found

Chapter 2 — An Overview of Procedural Content Generation in Video Games

their use in other fields (Dormans, 2010).

Dormans (2010) explains that, to set up a complete grammar, one needs an alphabet
and a set of rules. The grammar’s alphabet consists of symbols. The rules of the
grammar define rewrite operations, which consist of a left-hand side (LHS) and a
right-hand side (RHS). Both sides of the rule describe a pattern of symbols. With
this information, grammar-rules replace a found pattern that appears in the LHS of a
rule with the corresponding RHS of the rule. Further, Dormans (2010) explains that
symbols are divided into two categories, terminals and non-terminals. Non-terminal
symbols are symbols that are defined on the LHS of a rule. If a rule, however, produces
a symbol, not contained in any rule’s LHS, it will never be replaced, thus being labeled
as a terminal. While the original linguistic grammars generated strings, in the field of
level generation grammars popularly use the domain of graphs and shapes, conveniently
called “graph grammars” and “shape grammars” (Dormans, 2010; Williams, 2015, p.
16-17). The concept of these two grammar types will be covered in more detail in 2.2.3.
Shaker et al. (2016) clarify that there are two main categorizations when it comes
to grammars, being whether they are either deterministic or nondeterministic and
whether they apply rewriting operations in a sequence, or in a parallel manner (p. 75).
They explain that a grammar qualifies as deterministic, if every symbol has only one
corresponding rule, causing the generator to always return the same result, when given
the same input (p. 75). Nondeterministic grammars on the other hand, have multiple
possible rules able to be applied to one symbol, choosing a rule either randomly or by
specified, or even generated, contingency (p. 75). While sequential rewriting limits a
grammar to only apply one rule every iteration, parallel rewriting allows it to apply
multiple rewrite operations simultaneously (p. 75-76).

Sturtevant et al. (2015) mention that grammar’s can also be used in combination
with a generate-and-test approach. They add that grammars allow a high degree of
control over separate parts in the generated content, but tend to result in over- or
undergeneration or a repetitive output.

Dormans (2010) heavily emphasizes the importance of implementing recursive rules

when wanting to generate a bigger variety of results.

2.2.3 Constructive

As already introduced in Section 2.1, constructive generation is the faster and more
consistent counterpart to generate-and-test generation. They are commonly used to
generate dungeons (Shaker et al., 2016, p. 31) thus making them relevant to this
research. In addition to being fast and consistent, constructive algorithms are also
easy to implement (Shaker et al., 2016, p. 31). However, constructive generators also
come with the downside of a lack of control (Shaker et al., 2016, p. 32). The different

types of constructive techniques will be covered in this section.

Chapter 2 — An Overview of Procedural Content Generation in Video Games

Space Partitioning

Shaker et al. (2016), explain how space partitioning, is the process of creating a level
by taking the level space and repetitively splitting it into multiple cells (p. 33). In the
for level generation most popular space partitioning method, binary space partitioning
(BSP), every cell emerging from the previous iteration is being split into two new ones
(p. 33). This process will be repeated a desirable amount of times, with cells being
stored in a BSP Tree (p. 33). This BSP Tree is useful for fast collision detection or
raycasting (Shaker et al., 2016, p. 33) and considered as a practical representation of
the level itself (Williams, 2015, p. 9). In the example of generating a dungeon, after
the process of splitting the level area into cells is finished, rooms will now be placed
inside them (Williams, 2015, p. 11-12). Lastly, these rooms will be connected with
corridors and the dungeon generation is finished (Williams, 2015, p. 11-12).

An advantage of using this technique, is that, by the nature of the algorithm, it is
impossible for the generator to create overlaps. Additionally, the generated instance
will always have a very organized and structured appearance (Shaker et al., 2016, p.
34).

Agent-Based

When referring to agent-based generation, one describes the creation of a room-sequence
by using an agent that digs tunnels through a defined level space (Shaker et al., 2016, p.
38-39). Compared to the previous approach of partitioning space, agent-based genera-
tion has a rather organic and imperfect appearance, when compared to the cleaner and
more geometric one of the space partitioning method (Shaker et al., 2016, p. 38-39).
Shaker et al. (2016) describe how agents are NPCs that can be programmed to build
the level when being thrown into the level space (p. 38-39). Based on this programmed
behavior, the end result can vary quite a bit (p. 38-39). As an example, they specify
two types of agents (p. 38-41). While one can be extremely reliant on randomness, the
other can be given more intelligence, to keep track of the level structure as a whole and
have foresight of what comes next (p. 38-41). When comparing the output of these
two different agents, the level created by the first agent will be fairly unstructured and
disorganized, including the overlapping of rooms and dead-ends (p. 38-41). The level
created by the latter one however, will be the complete opposite: the ability to have
foresight about the generation allows the agent to avoid the mistakes being made by
the first agent, getting rid of overlapping rooms and dead ends (p. 38-41).
Nevertheless, Shaker et al. (2016) mention that this approach has another problem: the
high probability of the predefined level space not being used to its entirety (p. 38-41).
This can happen if the agent reaches a point where his intelligence will not allow him
to place another room or keep digging, because it would otherwise result in a dead-end

or the overlap of two or more rooms (Shaker et al., 2016, p. 38-41).

Chapter 2 — An Overview of Procedural Content Generation in Video Games

Cellular Automata

Much like space partitioning, cellular automata also works with cells (Johnson et al.,
2010). Different from the splitting of cells with space partitioning, here, cells get
eliminated in every iteration (Williams, 2015, p. 18).

Johnson et al. (2010) introduce an approach to use this algorithm in the context of
level generation. First, they define cells as a point in a grid. These cells can be either of
type floor or type rock. Additionally, each cell has its own neighborhood value, which
is calculated by the amount of rock cells that are surrounding it. Moreover, there is a
transition threshold to be defined that determines a cell as “floor” or as “rock”, based
on its neighborhood value.

The algorithm of Johnson et al. (2010) starts off by randomly distributing a defined
amount of rock-cells across a grid with only floor-cells. Then, when actually starting
the algorithm, each iteration checks for the neighborhood value of each cell and decided
whether or not to transition it to its counter-state, based on its neighborhood value.
After finishing the generation after a fixed amount of iterations, the result is a realistic
and organic cave-like structure. Johnson et al. explain that this algorithm is not very

taxing on the game’s performance, which makes it appropriate for usage at runtime.

Grammar-Based

Grammars, which have already been introduced in section 2.2.2, can also be used as a
base for a constructive algorithm (Shaker et al., 2016, pp. 45-46). When generating a
dungeon with generative grammars, it is popular to resort to graph or shape grammars
(Williams, 2015; Dormans, 2010).

Dormans (2010) states that graph grammars are a structure, composed of edges and
nodes. He explains that, if the in the grammar specified rules detect a pattern of
nodes and edges defined as a nonterminal symbol, this structure will be replaced by
a new one, being specified in the right-hand side of the rule. To keep track of the
nodes during the rewrite operation, grammar rules specify a number for every single
one (Dormans, 2010). Williams (2015), explains that graph grammars are limited to
generate the structure and relations between nodes, not the dungeon space itself (p.
17).

Dormans (2010), uses graph grammars to generate a dungeon’s mission, which will
later be assisted by the dungeons space. They define the symbols of the grammars
alphabet with tasks that the player has to take on.

The concept of shape grammars is very similar to the one of graph grammars, the
difference being that instead of edges and nodes, a shape grammar’s alphabet consists
of smaller shapes that, when combined, create a larger one (Williams, 2015, p. 17).
Dormans (2010), used shape grammars to accommodate the mission structure that was

generated beforehand.

Chapter 2 — An Overview of Procedural Content Generation in Video Games

2.2.4 Constraint-Based

Totten (2017) describes the constraint-based method as a declarative approach (pp.
167-168). They state that constrain-based generation uses a constraint solver to re-
turn a desired result, based on specified strict constraints. They add that the time a
constraint-based generator takes to generate content is heavily dependent of the prob-
lem the constraint solver needs to solve and the amount of constraint that has been
defined. With more constraints, there will also be a better chance of the generator

returning content of desired quality:.

2.3 Strengths and Weaknesses of PCG

2.3.1 Strengths of PCG

According to Totten (2017), one of the main advantages of using procedural content
generation is the seemingly infinite amounts of content that can be provided by the
player, giving them a new challenge every time they play, thus increasing the replaya-
bility of the game compared to handcrafted games (p. 160, pp. 219-220). They explain
that there are multiple other benefits resulting from this, like the challenge that comes
from being faced with new levels every time, making it impossible to know what comes
next or to memorize any patterns, as opposed to handcrafted games (pp. 220-221).
Addtionally, they mention that comes from the almost endless amount of content is
the exploration and discovery value that comes with it, since, when compared to hand-
crafted levels, the player will never have encountered every single gameplay scenario
the game can provide (pp. 221-222). Another advantage that comes with the use of
procedural systems is their ability to adjust themselves, for example adapting to the
player (2.1.6) (Totten, 2017, p. 160).

Green (2016) state that the generation also leads to the ability to create larger games
in general (p. 13). They explain that this is due to two reasons. First, since generating
a level is significantly faster than building a level by hand, one is capable of creating
larger worlds much faster with PCG (p. 13). The second reason is that “if a game
utilizes procedural generation correctly” (Green, 2016, p. 13), the size of a generated
world knows no limits (p. 13). This comes from the fact that procedural generation
systems do not need to save the patterns of objects, but only the objects themselves,

leaving the combination of them to an algorithm (Green, 2016, p. 10)

2.3.2 Weaknesses of PCG

Green (2016) claims that one disadvantage of PCG is the generation of content that can
feel repetitive (p. 15), as it can be the case for constructive or grammar-based methods
(Sturtevant et al., 2015). Green (2016) also mention that PCG can be computationally
intensive, making it necessary to always consider which hardware is capable of running

the generation algorithm (p. 15).

10

Chapter 2 — An Overview of Procedural Content Generation in Video Games

Short and Adams (2017), compare PCG to a painting brush that the painter may hold
closer to the end of its handle, which results in less control over the brush strokes
(p. 18). Due to this lack of control, one can never assure that the generation will
always go as expected and might include undesired and broken results that might only
occur extremely rarely (Short and Adams, 2017, p. 6). Lastly, procedural systems can
be implemented on a large and complex scale, making them very difficult to debug
(Totten, 2017, p. 163).

11

Chapter 3

Defining What Makes a Level Handcrafted

To achieve the goal of generating levels that seem handcrafted, it is necessary to get
an understanding of what can contribute to a level’s handcraftedness. This segment
will analyze handcrafted levels for their characteristics. First, it will be taken a look
at two analyses (Dormans, 2010; Stout, 2012) done of dungeons in games from the
The Legend of Zelda (Nintendo, 1986-2023) series. All titles from this series will be
referred to as “Zelda games”. Second, it will be researched what the overall structure
of a well-designed level looks like and what level design patterns are common to use.
For the sake of simplicity, all findings resulting from this research will be referred to as

“humanization techniques”, meaning that they improve the handcraftedness of a level.

3.1 Dungeons in The Legend of Zelda

To get an overview of how level designers build dungeons in handcrafted games, this

section will present two analyses done of dungeons in two different Zelda games.

3.1.1 Dormans’ Analysis

Dormans (2010) presents a detailed analysis of the structure of a dungeon in the game
The Legend of Zelda: Tuwilight Princess (Nintendo, 2006), which can be applied to
most dungeon-like levels in action adventure games. In their study, they found that
a dungeon can be split into two different structures: mission and space (Figure 3.1).
While missions define the sequence of tasks necessary to be completed to finish the
level, space gives the mission a structure to be mapped on. Dormans emphasizes that
mission and space are independent of each other and that one mission can be used
for several spaces, just like many different missions can be applied to the same space.
They also present a formula that is supposed to mirror the key stages of a dungeon’s
structure, found in many Zelda games. It consists of four stages, representing the
journey of the player and his development throughout the dungeon.

The four stages are as follows:

1. kihon stage: acquire an ability in an isolated space

2. kihon-kata stage: repeat and master the learned ability

12

Chapter 3 — Defining What Makes a Level Handcrafted

3. kata stage: learn about the combination of multiple abilities

4. kumite stage: test the player’s skills in a boss fight

Dormans (2010) add that the analyzed Forest Temple additionally follows a Hollywood
film-esque structure, where the player gets introduced to the adventure by a character.
Then, after defeating the mid-level boss, they obtain an item which sets the start to
the dungeon’s final segment.

It is important to note that this obtained item also acts as a key to multiple locks
inside the dungeon, ascending the form of simple doors (Dormans, 2010). Locks and
keys not being restricted to the principle of inserting a fitting key into the correct lock
to open a door but instead being embodied by items is a very common design principle
when it comes to dungeons in action-adventure games (Dormans, 2011).

Although the analysis done by Dormans (2010) is about a dungeon in a third person
game, this formula is seen in all entries within the series, such as The Legend of Zelda
(Nintendo, 1986), The Legend of Zelda: Link’s Awakening (Nintendo, 1993) and The
Legend of Zelda: A Link to the Past (Nintendo, 1991), which are all played in top-down

view.

mission

Figure 3.1: Mission and Space (Dormans, 2010)

3.1.2 Stout’s Analysis

Stout (2012) did an analysis similar to Dormans. They, however, focused on dungeons
from the top-down game The Legend of Zelda (Nintendo, 1986). While presenting
similar findings to Dormans concerning the training of the player, they also focused
on the difficulty and branching of the dungeon. They report that dungeons always
have a linear critical path, which is the path the player needs to take to progress.

However, optional rooms of exploration have been used to hide the linearity of the

13

Chapter 3 — Defining What Makes a Level Handcrafted

critical path. Concerning difficulty, they state that the difficulty of rooms on the

critical path increases from the beginning to the end of the dungeon.

3.2 Level Flow

To get a better and more detailed understanding of the general structure and pacing
of game levels, it has been analyzed how level designers compose a level or game in
terms of suspense and other things that can make players engaged.

Chen (2007) explains that flow (or pacing) is a key concept for designing game ex-
periences. Their research is based on Csikszentmihalyi (1990), who defined these key

components of flow:
1. Challenge
2. Goals that are clear to the player
3. Direct feedback
4. Distraction from everyday life
5. The feeling of control
6. Losing self-consciousness
7. Altering the sense of time

Chen (2007) explains a concept called the “flow zone”, in which modern games are
trying to keep the player in. The flow zone is the desired state of optimal balancing
between challenge and player ability, keeping the player from getting too overwhelmed

or too bored.

3.2.1 Difficulty Scaling

Feil and Scattergood (2005) divide the flow of a game into three different acts. In
the beginning, the player will be taught how to play the game, giving them easier
challenges that make them feel skilled (pp. 14-16). In the middle of the game, which
they describe as the main part, is where the game should ramp up in difficulty, adapting
to the improvement of the player’s skill (pp. 16-17). It is explained that this rise in
difficulty should happen gradually (p. 17). They also mention the concept of player
growth, expanding the player character’s strength by adding or enhancing abilities (p.
17). Last, there is the finale (pp. 17-19). The finale provides challenges consisting
of many challenges the player faced before, to test everything they learned on their
journey.

Feil and Scattergood (2005) also mention that the increase in difficulty can be im-
plemented through the supply of resources like health or ammo and the amount and

difficulty of enemies placed (p. 108).

14

Chapter 3 — Defining What Makes a Level Handcrafted

This is the same difficulty scaling mentioned in the analysis done by Stout (2012).

3.2.2 Difficulty Breathing

In addition to difficulty scaling, Feil and Scattergood (2005) also state that when
applying difficulty scaling to an area inside the game by making areas more difficult
towards the end, it is important to alternate between moments where the player can
relax before moving on to the next, more difficult challenge (pp. 107-108). In this
thesis, this concept will be referred to as difficulty breathing.

3.2.3 Objective-Challenge-Reward

A level commonly consists of objectives, challenges, and rewards, first giving players
an objective, then letting them face a challenge, and when successfully beating the
challenge, giving them a reward (Feil and Scattergood, 2005, pp. 119-136). When

designing the game’s or level’s flow, these three concepts appear to be essential.

Objectives

The objective tells players about their next destination, giving them a place to go and
things to do (Feil and Scattergood (2005), p 126). This ultimately provides a goal
for the gameplay, making objectives important for implementing the flow element of
setting clear goals the player can follow. One can categorize these goals as long-term or
short-term, short-term goals being smaller tasks for the player like defeating enemies
or finding items, and long-term goals representing a bigger mission that consists of
multiple short-term goals (Totten, 2014, p. 260).

Challenges

Feil and Scattergood (2005) explain that challenges are what stand between the player
and successfully pursuing the objective (p. 10). Challenges can be implemented in
many different ways, including giving players a time limit to achieve something, testing
how far the player can go before getting defeated, or giving the player limited resources

that they have to use carefully to overcome the challenge (Feil and Scattergood, 2005,
p. 10).

Rewards

Totten (2014) explain that rewards give the player motivation to face challenges or
even play the game at all, and sometimes they can become the objective themselves (p.
259). Tekinbas and Zimmerman (2003) define four different types of rewards (chapter
24, pp. 18-19):

e Reward of Glory: Do not affect gameplay but rather represent the player’s

achievement in the game.

15

Chapter 3 — Defining What Makes a Level Handcrafted

e Rewards of Sustenance: Resources to help the player through challenges, like

healing items or items that increase damage.
o Rewards of Access: Can be used once to grant the player access to new areas.

o Rewards of Facility: Grant the player new abilities or expand already existing

abilities.

Totten (2014) explains that rewards can also take the shape of gamespaces (pp. 246-
250). It is stated that while reward vaults contain reward items, there are other reward
spaces, like rewarding vistas, that reward the player with great views or visuals, or
meditative spaces that reward the player with calm, relaxing gameplay (pp. 246-249).
They also mention narrative spaces, which reward the player with progression in the
story (pp. 249-250). It is emphasized that rewarding vistas, meditative spaces, and
narrative spaces also reward the player with a moment of relaxation (pp. 246-250),

maintaining a good flow.

3.3 Patterns in Level Design

In this segment, it will be covered what techniques, structures, and overall design pat-
terns professional level designers use and the reasoning behind them. This research
focused on patterns that also have a strong presence of a designer’s intent to be used
to achieve the goal of making a level actually seem as if it was made by one. Addi-
tionally, dungeons of the top-down RPG game The Legend of Zelda: A Link to the
Past (Nintendo, 1991) have been analyzed, finding representations of these level design

techniques within its level design.

3.3.1 Gamespaces

Totten (2014) presents multiple gamespaces that can make up a level’s overall structure
(Totten, 2014, pp. 112-125). First, he presents three basic size types: narrow space,
intimate space, and prospect space (pp. 118-125). While narrow spaces are only slightly
larger than the player, prospect spaces are areas very big and open, leaving the player
without guard against attacks (pp. 122-123). Intimate spaces are neither small, nor
big and instead have a size and structure in which the character can comfortably use
his movement abilities to move around in (pp. 120-122). Totten also mentions other
gamespaces like labyrinths (p. 113) and mazes (p. 114), which will play an important
role in sections 3.3.3 and 3.3.4.

Totten (2014) emphasizes the importance of the combination of these different games-
paces to create interesting dynamics (pp. 125-130). An important concept he covers is
the alternation between prospect spaces and refuge spaces (p. 210-221). Refuge spaces

are being described as intimate spaces that provide cover and a view onto a prospect

16

Chapter 3 — Defining What Makes a Level Handcrafted

space (p. 211). Alternating between these two spaces creates an interesting relation-
ship between spaces that are safe or unsafe throughout a level, thus creating “emotional
experiences” (Totten, 2014, p. 210) for the player (pp. 210-212). This represents the
flow concept of difficulty breathing, where the player is in a more comfortable space.
Many examples of prospects and refuges can be seen when looking at a map of a
dungeon in The Legend of Zelda: A Link to the Past (Nintendo, 1991) (Figure 3.2).

Figure 3.2: Prospects and refuges in The Legend of Zelda: A Link to the Past (Nintendo,
1991) (Rick N. Bruns, 2019b)

3.3.2 Encouraging Exploration

Totten (2014) explain that another common technique in level design is the encourage-
ment of exploration (pp. 243-245). They explain that one way to do this is through
zen views (pp. 251-252). Zen views use the sight of the player to show them a reward
while not directly showing them how to get there, thus encouraging them to explore
the level to find a way (pp. 251-252). In top-down games, this can be implemented
easily because the player is not actually limited to the avatar’s view but sees the entire
level from above (section 1.1). Under these circumstances, one can easily show players
a reward in a room hidden behind a wall while still being visible to the player but only
accessible by entering the room through a different entrance (Totten, 2014, p. 244).

The Legend of Zelda: A Link to the Past (Nintendo, 1991) uses this technique to hint
at a big chest the player can see but not reach while traversing a bridge (Figure 3.3).
This gives the player a hint to explore the area around the chest to get to it. The chest
mentioned is the same chest the player reaches at the end of the maze mentioned in

the previous section.

17

Chapter 3 — Defining What Makes a Level Handcrafted

Figure 3.3: A dark maze with invincible enemies in The Legend of Zelda: A Link to the
Past (Nintendo, 1991) (SweetJohnnyCage - Narrated Guides & Walkthroughs, 2020)

3.3.3 Using Player Emotion

Totten (2014) explains how level designers can make use of the player’s emotion (pp.
114-116, pp. 208-210). They explain that this can be done by combining narrow
architecture, like mazes, with very strong enemies (pp. 114-116). They also describe
how another way to introduce drama in a level, especially in games where players have
to use their resources carefully, is by taking advantage of the player’s low amount of
resources by letting them face difficult challenges that are hard to estimate, for example
because they include hidden enemies, which creates stressful gameplay (pp. 208-210).
The dark palace in The Legend of Zelda: A Link to the Past (Nintendo, 1991) uses a
small, dark maze where the placer has to quickly reach the next door before getting

hit by invincible enemies roaming around the maze (Figure 3.4).

4 = A — LIFE —

z -
IZ3 28 I8 O OOOD

Figure 3.4: A dark maze with invincible enemies in The Legend of Zelda: A Link to the
Past (Nintendo, 1991) (SweetJohnnyCage - Narrated Guides & Walkthroughs, 2020)

18

Chapter 3 — Defining What Makes a Level Handcrafted

L EmmO

z G - o
zs-? a2 14 1

Figure 3.5: The player gets rewarded after finding their way out of the maze in The
Legend of Zelda: A Link to the Past (Nintendo, 1991) (SweetJohnnyCage - Narrated
Guides & Walkthroughs, 2020)

3.3.4 Balancing Risk and Reward

Risk is a common tool to implement in level design used to contribute to the player
experience’s excitement (Totten, 2014, p. 194). McMillen (2010) explains how, origi-
nally introduced in arcade games, risk-reward is a concept rewarding players for taking
a higher amount of risk than usual. They state that this risk is oftentimes completely
optional, which is why a level should reward taking that risk accordingly. Typically,
the risk players take is losing health (McMillen, 2010; Totten, 2014, pp. 208-210).
Totten (2014) explains how the example of creating dramatic experiences by taking
advantage of a player’s vulnerable status and hidden enemies in section 3.3.3, can
also be used as a risk-reward scenario (pp. 208-210). This is due to the challenges
unpredictability, putting players, even when possessing a high amount of resources, at
risk of losing those resources in order to achieve the challenge’s rewards (pp. 208-210).
They also mention that the uncertainty of gamespaces like mazes also serves as a good
base for risk and reward (p. 114, p. 210)

A good representation of this can be found in the maze of The Legend of Zelda: A Link
to the Past’s (Nintendo, 1991) Dark Palace. Here, the player wanders through a dark
maze with many branches (Figure 3.5). However, the risk the player takes to explore
the maze gets rewarded accordingly with a key and an item necessary to progress, with

the item even rewarding them with a new weapon.

3.3.5 Object Structure & Object Purpose

Since procedural generation relies a lot on randomness, the random distribution of ob-
jects across the level would result in rather chaotic, unstructured, and even meaningless
patterns. This is the exact opposite of what one can find when looking at handcrafted
levels. When looking at dungeons in The Legend of Zelda: A Link to the Past (Nin-
tendo, 1991) for example, it is easy to make out symmetrical, structured, clean, and

generally just visually appealing patterns. This also applies to the level’s architecture,

19

Chapter 3 — Defining What Makes a Level Handcrafted

which includes mostly symmetrical shapes for rooms (Figure 3.6).

(b)

Figure 3.6: Symmetric object structures in The Legend of Zelda: A Link to the Past
(Nintendo, 1991) (Rick N. Bruns, 2019d; Rick N. Bruns, 2019c¢)

Feil and Scattergood (2005) stress the importance of having enemies have a reason to
be where they are (p. 101). They explain that this reason could, for example, be to
protect something the player might want to get or to reach something the player needs
to defend (p. 101). This fulfills the concept of objective-challenge-reward, putting
a challenge between the player and the reward, in this case leaving it optional to
the player if they want make it their objective to obtain that reward. With random
generation in PCG, this is also something that only has a possibility of happening and
will not be consistently created.

Regarding object purpose, many patterns where enemies have the purpose to protect
something from the player can be found in The Legend of Zelda: A Link to the Past
(Nintendo, 1991) (Figure 3.7).

20

Chapter 3 — Defining What Makes a Level Handcrafted

Figure 3.7: Enemies protecting items from the player in The Legend of Zelda: A Link
to the Past (Nintendo, 1991) (Rick N. Bruns, 2019d)

3.3.6 Giving the Player Hints

Totten (2014) describes that by using repeating patterns, a level can indirectly tell the
player about what is coming next (p. 46-48). They explain that this concept can give
players not only information about difficult challenges that are coming up but also
give them time to plan and prepare (p. 46-47). Totten give the example of Mega Man
(Capcom, 1987), which uses an empty corridor that is placed right before the boss fight
every time, which makes the player recognize them as an indicator for a boss fight (p.
A47).

Additionally, transitions like these can also give the player a hint by their nature
alone without being repeated, using game objects to signalize the entrance to a more
dangerous area (Totten, 2014, p. 142). This could also be applied to the empty boss
corridors used in Mega Man (Capcom, 1987), since they are so distinct from the rest of
the level that one could suspect a special event is coming up even on the first encounter
with the pattern.

McMillen (2010) explains that it is also common to use collectable items to guide
players where to go and where rewards could be hidden.

An example of this can also be found in The Legend of Zelda: A Link to the Past
(Nintendo, 1991), where the room connected to the room in which the boss is located,
has a narrow path to the boss room door, guarded by enemies (Figure 3.8). This gives
players the feeling that the are entering the throne room of the dungeon’s strongest
enemy. Additionally, on the floor tiles in front of the boss room door, players can find a
symbol on the ground signalizing that this is the boss room. This symbol is repeatedly

used throughout the game.

21

Chapter 3 — Defining What Makes a Level Handcrafted

B §

i«
)| 14,2

Lo

| e e - e |
) e e e e e e e e e e e e e e e |

—eeees|

L]
' %
3
:
H
:
:
}
H
:
:
:
:
:

1 i = il = = -

Figure 3.8: A dark maze with invincible enemies in The Legend of Zelda: A Link to
the Past (Nintendo, 1991)(Rick N. Bruns, 2019d)

22

Chapter 4

Procedural Generation Methods to Generate Seemingly
Handcrafted Levels

This chapter will present research done about PCG techniques and approaches that
provide the necessary control over the generator’s output and make it possible to
design a level to a high enough extent that implementing the established humanization
techniques is possible in a procedural system.

All promising methods that were found during research fall into the category of mixed-
initiative generation. This makes sense, since, when looking at the types of generators
(section 2.1), mixed-initiative ones seem to provide the most control over the gener-
ation, since the designer is directly involved in the process. This allows for strong
restrictions that lead the generator to behave in a desired way but can still provide the
variety of randomness in procedural generation (Totten, 2017; Short and Adams, 2017;
Mawhorter and Mateas, 2010; Smith et al., 2010). This makes them favorable for the

goal of implementing certain design patterns into a procedural generation process.

4.1 Vertical Handcrafted Integration

In their analysis about handcrafted integration in procedurally generated games, Totten
(2017) came to the conclusion of two different types of integrating handmade content:
vertical integration and horizontal integration (p. 227). Totten (2017) describes ver-
tical integration as a handmade sequence, continuously progressing through the entire
playthrough, instead of just through a single level, establishing purpose and coherence
(p. 238). In the analysed games, this is being done by integrating handmade narratives
or puzzles (p.238).

4.1.1 Case Study: Faster Than Light

In his analysis, Totten (2017) explains, how the game FTL: Faster Than Light (Subset
Games, 2012) (FTL) makes use of a handcrafted narrative supporting the game’s other-
wise generated levels (pp. 227-229). In this game, the player navigates a his spaceship
to escape the enemy that is chasing him, moving through a map entirely made up of
nodes, each node being a certain event (p. 228). While the majority of these nodes are

procedurally generated, some nodes contain handmade quests and are laid out in a se-

23

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

quence specified by hand (p. 228). While the handmade instances are optional, player
are animated to still play through them, by, when beating the challenges provided
by these nodes, receiving higher rewards compared to the rest of the nodes (p. 228).
Totten explains that the incorporation of this handmade narrative not only introduces
variety to the procedural structure, but also makes separate playthroughs distinct and
unique (p. 229, p. 230).

4.1.2 Case Study: Spelunky’s Secret Puzzle

Similar to F'TL: Faster Than Light (Subset Games, 2012), Spelunky (Mossmouth, 2008)
also uses vertical integration to create a narrative that accommodates the playthrough
(Totten, 2017, pp. 230-231). This handmade narrative, however, is less of a story like
FTL’s and instead a secret puzzle (Totten, 2017, pp. 230-231) that the player might
not even come across in the first place (Mossmouth, 2008). Like FTL: Faster Than
Light, this secret quest is not necessary to complete the playthrough and consists of
certain items (pp. 230-231). If players wants to enter a secret path towards the end of
the level and get a special ending, it is mandatory for them to collect all of the items,
since they act as keys to reach this secret path. Spelunky also incorporates a different
sort of narrative by scripting different biomes, like ice and jungle, which change every
every four levels, each containing different objects and enemies (p. 231) (Mossmouth,
2008). Totten (2017) explains that the use of this handmade narrative leads to a unique
challenge for players wanting to ascend the default difficulty of Spelunky and counters
the complexity of generating it procedurally (pp. 230-231).

4.1.3 Game Forge

Hartsook et al. (2011) present another mixed initiative method, focusing on the story
of procedurally generated games. Their system, Game Forge, uses a sequence of plot
points, which represent the order in which a player has to perform different tasks like
defeating enemies, buying or selling items, or interacting with certain NPCs, as well
as defining where players have to perform that action. They explain that this plot
point sequence can be generated, but can also be designed by a human. Based on
this predefined story, the game world will be generated, taking player preferences into
account (Hartsook et al., 2011).

4.1.4 Conclusion

FTL: Faster Than Light (Subset Games, 2012) and Spelunky (Mossmouth, 2008) show
useful ways of how one can effectively string together a series of procedurally generated
levels to accommodate a human-designed, precise, and complex mission, still keeping
the qualities of PCG’s replay and exploration value.

Game Forge is a more general representation of the vertical handcrafted integration
done in Mossmouth (2008) and Subset Games (2012), allowing for control of the se-

24

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

quence of events the player encounters and ultimately giving the opportunity to design
the progression of a game.

Vertical handcrafted integration seem to be a powerful tool when trying to generate a
certain type of progression and narrative throughout the game, making it a promising

tool to implement flow (section 3.2) in a generated level.

4.2 Horizontal Handcrafted Integration

When integrating handcrafted content in a horizontal manner, it is more about the
interchangeability between the generated content and its handmade counterparts (Tot-
ten, 2017 p. 238),

4.2.1 Case Study: Dungeon Crawl Stone Soup

Dungeon Crawl Stone Soup barbs, 2006 is a roguelike game combining PCG and hand-
made content in a very interesting way. In this game, levels are procedurally generated
for the most part, but not entirely (Totten, 2017). Totten (2017) explains how DCSS
(Dungeon Crawl Stone Soup) uses handmade instances, called "vaults”, to introduce
variety and character into the visual appearance and gameplay flow of the otherwise
fully procedurally generated level (p. 229-230). These vaults provide more difficult
and well designed and planned gameplay experiences (p. 229). To balance the risk
players will take trying to conquer vaults, when successful, they will also be given
bigger rewards (p 229-230). Because of their specific, symmetrical structure or special
objects, already at the start of a level, the player can immediately identify the hand-
crafted vaults (pp. 229-230) and Totten gives the idea that hiding the obviousness of
this may be not even desired in the first place (p. 236). Similar to Faster Than Light,
even though the exploration of vaults is not necessary to progress (p. 230), players are
encouraged to explore the handcrafted instances by being given the chance to obtain
greater rewards (Totten, 2017, p.230).

4.2.2 Case Study: Spelunky’s Dungeon Patterns

In addition to vertical handmade integration, Spelunky (Mossmouth, 2008) also im-
plements handcrafted content in the horizontal manner (Totten, 2017). Totten, 2017
describes how Spelunky uses handmade rooms that define its structure on a macro level
to generate dungeons (pp. 230-231). These rooms are later being procedurally modi-
fied on the micro level to introduce more variety and counter pattern repetition (pp.
230-231). Spelunky also features something called "level feelings”, which are levels that
restrict the generator to generate special events and structures (Mossmouth, 2008), or

dominantly use a certain enemy type (Totten, 2017, pp. 230-231).

25

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

4.2.3 Case Study: Dungeonmans

Dungeonmans (Adventurepro Games LLC, 2014) is a game using handcrafted inte-
gration to design multiple distinct gamespaces like "graveyards, fallen castles, crypts,
friendly towns, mighty towers, and the good old-fashioned dungeon” (Short and Adams,
2017, p. 63). For dungeons, it is explained that to create the playing field, handcrafted
rooms are being placed in a procedural manner (p. 66). The room data is stored inside
text files containing a rectangular seed defined by ASCII characters, with the first line
defining the dimensions of the seed (pp. 63-64) (Figure 4.1). It is emphasized that
although the seeds are rectangular, the rooms themselves can still be nonrectangular,
leading to their goal of producing more interesting results (p. 63). Short and Adams
(2017) explain that an “area gen code” is used to fill the rooms with loot, enemies,
and external rooms, which is why they are not included in the room seeds (p. 64). For
dungeons, the purpose of the handcrafted rooms is to provide spaces where combat is
fun, hence why they use “a mixture of large areas and small, twisting paths and grand
hallways, tight clusters of rooms and open arenas with cover” (Short and Adams, 2017,
p. 66).

9,9, 12,10, 12,7, First line: width and height of room
W o XXXXXX . . seaWe W X : Unused Space to help room shapes fit closely
RV VR L XXXXXKL .. meeOeMe together.
--------- R w : Wall Tile blocking wall tiles
REELLEEE » s o KEKXKKX. .. u .wdm;mmdw : Empty Tile open space to fill with loot and
W.W. W I W, el monsters.
W Weeeeeee w M; """ d : Door Tile an internal door
R B R AL
A . e Wi, ..
......... « WA

o XXXXXX. ..

Figure 4.1: Seed data for dungeons in Dungeonmans (Adventurepro Games LLC, 2014)
(Short and Adams, 2017, p. 64)

To generate a level, Short and Adams (2017) describe that one specifies the level space
as empty and define a maximum room count (p. 64). Then, a random room is being
inside the level space and the dungeon is being grown from there by continuing the
placement of rooms with random orientations (Short and Adams, 2017, pp. 64-66).
Short and Adams (2017) do not recommend changing the shape of rooms that oth-
erwise would not fit, explaining that it would lose the concept and idea defining the
room in the first place (p. 65). After the overall structure of the dungeon has been
generated, they also implement some extra doors to avoid backtracking by creating
cyclic paths between rooms (p. 66), moving away from a branching nature, similar to
like Unexplored does. Additionally, they also pick out doors on walls that are too long
and empty and widen them to make it more difficult for the player to use tight room

openings to their advantage in combat against enemies (p. 66).

26

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

Short and Adams (2017) also give insight on how the generation of crypt areas works,
this time with all room seeds having the same dimensions of 7 x 7 and holding exits
to the north, east, south, or west (p. 66). In their overall style, crypts aim for an
entirely different structure, the goal being more narrow with some open areas to give
the player space to breathe (p. 66). Different from the dungeon seeds, crypt seeds
also provide information about loot and also statues exclusive to crypt areas, adding
to the darker atmosphere (p. 66) (Figure 4.2). Crypt rooms also have another big
difference from the dungeon ones, this time having open sides, enabling them to be
combined to create larger shapes (p. 66). This works by sorting rooms into lists based
on their exit direction, one for each direction (p. 66). To combine rooms, the generator
picks out a room with an open exit and then chooses a room with an opposing exit
direction to merge it with (p. 67). A further distinction from dungeons is that crypts
also feature different enemy types, making effective use of the level’s narrow nature
by using multiple enemies to chase the player and enemies that can control the player
(Short and Adams, 2017, p. 68).

0100 1111 1011 1000

HHEEHEE O H#... .. # ... HHEHE #H..... # #: Wall tile

HEY ... #.#.#.# HEHEE #CHEHCH .t Empty tile

HEE?LH., ..., .. JHHEE HHHE HEE C: Coffin usable object
fHHED ... HOHLHLE HEHEEE O #F..... # S: Statue art object
HHHHHH O O#..... # ... HHEE #..2..# P: Mysterious pool!
$HHEHEHE HHEHEE O JHHEE HHEHBEHE 2 Random object from list

Figure 4.2: Seed data for crypts in Dungeonmans (Adventurepro Games LLC, 2014)
(Short and Adams, 2017, p. 67)

4.2.4 Conclusion

Dungeon Crawl Stone Soup (barbs, 2006) shows the implementation of a lot of the
previously mentioned level design patterns. Vaults create a balance between risk and
reward and Totten (2017) explains that when placing objects like items and enemies,
the game also takes into account what area the player is in and how deeply into the
dungeon it is located (p. 229), incorporating the concept of biomes and difficulty pro-
gression. Additionally, Totten also explains that DCSS uses different patterns between
playthroughs when generating content to make them more distinct (p. 229). Placing
large elements entirely created and designed by hand into a level, like DCSS does with
vaults, is a simple and effective technique to contribute to the handcrafted appearance
of the level as a whole, effectively balancing out the randomness of the procedurally
generated content.

Spelunky (Mossmouth, 2008) presents an approach to effectively balance the random-
ness of PCG and the design of handcrafted instances, by blending the two, creating
rooms that follow a handmade macro structure, but, because of the procedural varia-

tion for only specific room tiles, will rarely be identical. The implementation of level

27

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

feelings also contributes a lot to the levels it is used in, following a challenge designed
by hand, strongly constraining the level generator to follow that planned out challenge.
The approach used in Dungeonmans (Adventurepro Games LLC, 2014) seems effective
in providing the ability to design different areas with the alternation between different
gamespaces, which, shows high potential of providing the necessary ability to imple-
ment many of the humanization techniques. It also proves to successfully generate
completely different structures as a whole by providing many opportunities to imple-
ment different level design, which becomes clear when comparing dungeons with crypts.
The implementation of cycles also adds a lot to a handcrafted appearance, since these
are also found a lot in handcrafted levels, as stated by Short and Adams (2017) (p.
84).

Horizontal handcrafted integration appears to be a tool with high value. As seen in the
examples, it is capable of providing control over the space and, more importantly, the
patterns it generates. When considering the goal of implementing the analyzed level

design patterns (3.3, this seems to be an effective way to achieve it.

4.3 Grammars

Dormans Dormans (2010) presents how to utilize the results of their analysis of action
adventure game dungeons, which has been covered in section 3.1.1, within the process
of procedural dungeon generation. They start off by first explaining the utilization of
generating dungeons in a more abstract way, introducing a simple alphabet and rules for
a dungeon grammar and give an example that represents the structure of the analyzed
Forest Dungeon in this form (section 3.1.1). The grammar starts with the symbol of
the dungeon as a whole, getting replaced by the symbols "obstacle” and "treasure”.
The obstacle will then be replaced by patterns of symbols, containing typical dungeon
segments like "key”, "lock”, "monster”, "treasure” and "room”. According to Dormans,
this approach can produce something boring or too short, but it is stressed that this
problem does not lie within the grammar itself but in the rules that make it up.

Dormans (2010) later gives a detailed explanation of the generation process of the
actual dungeon. Based on their previous statement that mission and space are to be
separated, they go on to explain how one can generate missions and spaces in separate
approaches, using graph grammars for mission generation and shape grammars for
space generation. They have both already been introduced in Section 2.2.3, but will

be explained in more detail in the following segment.

4.3.1 Mission Generation

Dormans (2010) states graph grammars are a good choice when generating missions
and is best being done in a nonlinear form. They also stress that mission grammars
require a alphabet consisting of distinct tasks that not only challenge but also reward

the player. They give a detailed explanation in how they use graph grammars do

28

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted

Levels

generate the dungeon mission. After setting up the grammar’s alphabet and rules

(Figure 4.3), they explain the iteration steps are as following:

1. Check for nonterminals

2. If a nonterminal pattern has been found, the detected nodes will be numbered

after the corresponding rule’s LHS.

3. Remove all edges between the nodes.

4. Replace the nodes in the graph with their RHS equivalents

5. Add nodes of the RHS that do not have an equivalent number on the LHS of the

rule.

6. Reconnect the nodes with egdes after the applied rule’s RHS and remove the

numbering.

Dormans adds that one can only add the functionality to remove existing nodes. In

addition to the normal edges that are represented by a single arrow, they also introduce

double arrows, which represent a "tight coupling” (Dormans, 2010) between nodes,

forcing the succeeding room to be placed behind its predecessor, giving the designer

more control of the level’s branching. This has the important purpose of fulfilling

meaningful level design practices like placing keys or rewards behind a challenge or a

lock, excluding the chances of these objects being randomly placed before the player

even encounters the problems to solve, which would result in poor gameplay quality

(Dormans, 2010).

2:B

+

1:A

Figure 4.3: Graph grammar rule to generate missions (Dormans, 2010)

4.3.2 Space Generation

2:A

4:B

Next, Dormans (2010) explain their process of grammar-based space generation, using

shape grammars. Similar to the numbering when using graph grammars, they intro-

duce the usage of indicators to help with orientation, like finding the starting point.

He establishes a simple grammar (Figure 4.4), possessing an alphabet only containing

29

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

the three symbols of “wall”, “open space” and “connection”, defining only the connec-
tion as a nonterminal. The mentioned orientation indicator is given to the connection,
taking the shape of an arrow on a square and being used to indicate the location and
orientation of the replaced connection (Dormans, 2010). Dormans (2010) further ex-
plains how during the generation process, these connections will be closed by replacing
them with basic dungeon structures like a simple wall or a T-Fork, either closing or
growing the structure of the level. In an example, Dormans declares a single connec-
tion as a starting symbol and explains that the every iteration, the connection to be

replaced was selected at random.

Figure 4.4: Shape grammar alphabet and rules to generate space (Dormans, 2010)

4.3.3 Combining Mission and Space

At the final segment of their study, Dormans (2010) demonstrates the combination of
the two generation processes for mission and space. Thy achieved this by attaching
mission symbols to the rules of the shape grammar. Their grammar iterates through
every symbol in the mission graph generated in advance, filtering out the shape gram-
mar’s rules not coupled to this specific mission symbol and then applies one of them at
one of the possible locations the shape could be inserted in, being picked randomly but
also based on a relative priority. To realize the before mentioned tight coupling, the
generator tracks what shape has been generated for which mission (Dormans, 2010).
Dormans (2010) also introduces the dynamic parameters to be used together with shape
grammar, to gain more control over the selection of rules. They explain that these pa-
rameters will allow the grammar to favor rules that provide a bigger challenge to the
player, or switch to a completely different rule set. This function aids in building a
progression in the level’s difficulty Dormans, 2010. In addition to this, Dormans (2010)
also proposes the use of commands that can be added to a rule and will be run right
before the rule is applied. He demonstrates this with a shape grammar rule replacing

a connection for a T-fork, tied to the mission symbol “exploration” and associating the

30

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

rule with the command “repeat(3)” (Dormans, 2010). In the example Dormans (2010)
gives, the exploration symbol comes right after the entrance, which has three different
connections, resulting in the placement of three T-forks on the entrance’s connections
by technically only applying one rule. He also provides a solution to the problem of
the grammar possibly generating a dungeon that has the boss room connected to the
entrance or to a room right next to it, leading to a level where the player can just skip
all the tasks and directly go to the boss room. Their solution to this, is the usage of
a rule command that disables all connections generated up to that point, leaving only
connections of newer rooms, further into the mission chain. Similar to tight coupling,
this also gives the designer more control about branching inside the level. As stated
by Dormans, after the generator iterates through every mission symbol, the grammar
can proceed with normal rewriting operations inside the shape grammar domain, with
a separate rule set having no associated mission symbols, replacing nonterminals until
none are left. Dormans also describes the idea of giving separately generated rooms the
ability to reconnect, if specified conditions, like being already well aligned for example,

are met.

4.3.4 Lock and Key Mechanisms

Based on the research presented in the previous section, Dormans and Bakkes (2011)
practiced further research into the topic, conducting improvements to the approach and
also establishing the use of player models, enabling the content generation to adapt
to the player’s behavior. Compared to the previous technique, there are two main
differences. First, since this time, they focused more on the positioning and order of
locks and keys, which led them to break down the mission’s alphabet into something
much simpler, only possessing the symbols of “start”; “task”, “lock”, “key” and “goal”.
Secondly, space generation was not anymore entirely up to shape grammars, giving the
reasoning that they had difficulty “generating spaces for missions which allow multiple
paths to converge at the same target”(Dormans and Bakkes, 2011). Their solution
to this problem is the prior reorganization of the mission graph into a more organic
layout, which serves as the base structure to be accommodated by shape grammars.
They state, however, that this technique proved to have difficulties with overlapping
connections, but also proposed easy solutions for this problem in the scope of action
adventure games, such as the implementation of teleporters or portals for instance.
They further explain that after the organic reorganization of the mission graph, task
nodes will be replaced with rooms varying in size, containing keys and being connected
by locked doors. The next step uses the evolution shape grammars to give these rooms
more detail. Concerning locks and keys, they introduce rewrite rules that lead to
moving locks towards the front and keys towards the back, ensuring the player comes
across the lock first. Another difference to Dormans (2010) approach, is that while he

implements the functions of tight coupling and closing off previous connections, to gain

31

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

more control about branching, there is no need for this here, since the mission graph

already determines the final branching of the level.

4.3.5 Cyclic Generation

Short and Adams (2017) describe the approach taken for Unezplored (Ludomotion,
2017), which is a top-down dungeon crawler. They describe a method that takes their
previous research about grammars for level generation and the lock and key mechanisms
of Dormans and Bakkes (2011) one step further. Joris Dormans (2016) states that, for
Unexplored, a lot of inspiration has been drawn from Zelda games and that, for this
game, the goal was to recreate the feel of their thought-out level design in a procedural
generator.

According to Short and Adams (2017), Unezplored combines different design patterns
to create a level “that feels consistent and creates an exploration challenge beyond
a series of individual monsters and hazards” (Short and Adams, 2017, p. 84), again
focusing on the design of locks and keys (pp. 87-93), as already previously done by
Dormans and Bakkes (2011). Joris Dormans (2016) explains that for Unezplored,
their goal was to make a level generator that feels handcrafted. They tried to achieve
this by developing a level generator capable of generating the advanced lock and key
mechanisms Zelda games, and they was heavily inspired by the franchise as a whole
(Joris Dormans, 2016).

In the approach used to generated levels for Unexplored, Short and Adams (2017)
introduce the usage of cycles, which uses two routes to connect the level’s start and
goal, different from the traditional branching structure using only one route (pp. 84-
86). Short and Adams claim cycles to be more effective than branching, stating that
they contribute to the level flow and give the player multiple solutions to beat a level
(pp. 84-86). It is explained that the implementation of cycles knows multiple ways,
dependent on the difference between the two paths (p. 84).

Unezplored implements many different key and lock types that are procedurally gen-
erated, directly following many of lock-key concepts found in Zelda games (Short and
Adams, 2017, pp. 91-93). Short and Adams (2017) state that for keys, they differen-
tiate between “single purpose” and “multipurpose”, “particular” and “nonparticular”,
“consumable” and “persistent”, and keys that are stationary and keys that the player
can pick up (pp. 91-93). Locks are distinguished by their safety (“conditional”, “dan-
gerous”, or “uncertain”), their permanence (“permanent”, “reversible”, “temporary”
or “collapsing”), and their symmetry (“valves” or “asymmetrical”) (Short and Adams,
2017, pp. 91-92).

Short and Adams (2017) further describe how to integrate these different types of keys
and locks in the generation process, in Unexplored’s generator, they can be tagged with
a type (pp. 91-93). The same works for room nodes, which could also be of different

types (p. 89). To realize these design patterns inside the generative grammar, grammar

32

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

rules with specific rewrite operations introduced (Figure: 4.5) (pp. 87-90). These
grammars create and expand cycles and then incorporate special level design patterns
based on the different lock and key types and other ones like patrolling monsters or
a longer safer and a shorter more dangerous path (pp. 87-90). Some patterns even
consider what the player can see at certain points, hinting at keys without providing a

direct path to them, for example (pp. 87-90).

Monsters

BICE

Long a, longb Two alternative paths

a
Q Secret Yy

Long a, short b Hidden shortcut

2°
’;
Short a, long b Lock and key cycle
A Patrolling monster
Short a, short b Patrolled cycle

Dramatic cycle Dangerous route

Collapsing bridge Collapsing bridge

@ @ Visible
@ @ reward!
Danger?

Unknown return path Lure and setback

Lock
a a Danger?
A el /
Visible? ¥ - Visible! A) Reward

Simple lock and key Gambit

Figure 4.5: Graph grammar rules used in unexplored (Short and Adams, 2017, p. 90)

For the mission generation, Short and Adams (2017) are using graph grammars like
the previous approaches (83-90). To make the transition from the generated graph into
space easier, the graph will be rearranged along a two-dimensional grid beforehand (p.
94), something already considered by Dormans and Bakkes (2011). Short and Adams

explain that all rewrite operations will be performed on that graph, with nodes storing

33

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

their room information (p. 94). To translate the mission graph into the dungeon
space, a low-resolution tilemap closely following the graph structure will be created,
followed by the creation of a high-resolution tilemap to introduce more details to the
dungeon (pp. 94-95). After that, other transformation rules will be used for decoration,
room expansion, and the incorporation of additional features (pp. 94-95). This last
procedure is very similar to how Dormans and Bakkes (2011) used shape grammars.
Shape grammars in particular, however, are not directly mentioned by Short and Adams
(2017).

4.3.6 Conclusion

With the goal to create levels that feel handcrafted, combined with the heavy inspira-
tion Zelda games, Dormans (2010) developed a procedural generation technique that
uses grammars, together with their research about dungeons in action-adventure games,
to their full potential and generates structures very close to the quality of the dun-
geons found in Zelda games, which becomes very clear when looking at the countless
techniques and patterns that Unezplored (Ludomotion, 2017) is able to generate.

Short and Adams (2017) also state that cycles are found in many different handcrafted
dungeon levels (p. 84) giving Unexplored’s implementation of other popular design
patterns featured in handcrafted games a fitting environment to simulate handcrafted-
ness. Unexplored’s usage of many different keys and lock types, some of which are more
abstract, takes important design principles from dungeons in Zelda games, which are of
very high value when trying to generate similar structures. Another really important
thing to note is that the implementation of rules that include showing the player the
key without showing the way, is a direct representation of zen views (section 3.3.2),
used to encourage the player to explore the dungeon space, inside a procedural system.
These grammar approaches seem to be an effective tool when it comes to implementing
the previously established level design patterns in procedurally generated levels. Being
able to place rewards like keys behind a task (Dormans, 2010) incorporates an objective-
challenge-reward structure and being able to force locks being encountered before keys
(Dormans and Bakkes) not only incorporates a objective-challenge-reward structure,
but also encourages the player to explore the level. Additionally, the ability of switching
between rule sets to implement a scaling in difficulty (Dormans, 2010) gives important
control over the level flow. Shape grammars seem highly customizable, making them
a useful a tool to implement different gamespaces and alternate between them. The
high customizability of shape grammars and the possibility to design them by hand,
together with the the high control that comes from grammar rules (Dormans and
Bakkes, 2011), also seem useful when trying to get more organized object placement
and implementing object purpose. Furthermore, the high control that comes with
grammar rules should also prove practical for implementing a good balance of risk and

reward. Generally, Dormans and Bakkes (2011) emphasize that, with the right rules,

34

Chapter 4 — Procedural Generation Methods to Generate Seemingly Handcrafted
Levels

“the level design principles that drove the design of the Forest Temple level can be
easily codified” (Dormans and Bakkes, 2011), further implying that this method is a

useful tool to generated seemingly handcrafted levels.

35

Chapter 5

Generator Concept

Based on the research about handcrafted levels and the research about suitable pro-
cedural generation methods, a generator expected to generate seemingly handcrafted
levels has been created. The generator mainly follows the grammar approach presented
by Dormans (2010). Numerous other approaches like the one used in Dungeonmans
(Adventurepro Games LLC, 2014), as presented by Short and Adams (2017), or the
one presented by Hartsook et al. (2011), have also been used. The result is a mixed-
initiative tool with a high degree of handcrafted integration. More specifically, the
generator combines the analyzed grammar approaches (4.3) with the approach of Dun-
geonmans (Adventurepro Games LLC, 2014) (Short and Adams, 2017) and uses the
concept of Game Forge (Hartsook et al., 2011) to connect mission and space along
a defined narrative, as seen in the examples of Spelunky (Mossmouth, 2008) (section

4.1.2) and FTL: Faster Than Light (Subset Games, 2012) (4.1.1).

5.1 Grid Generation

First, it was relevant to implement a grid system. Since the game would be only
consisting of elements distributed a 2D grid, the grid has to cover the X and Y axis of
the game world. Each grid-tile is 100 units long and wide. To place objects in a grid,
dependent on their position inside it, objects have been placed in steps, 100 unit large,

towards the worlds x and y directions.

5.2 Level Seed

After the implementation of the grid system, there was a need for information that the
grid system can use to distribute objects. Inspired by Dungeonmans (Adventurepro
Games LLC, 2014), the level generator follows an ASCII approach. The entire level
information, including every tiles position and object type, can be represented by a
seed. This seed will always rectangular. With this functionality, one can save the
generated level as a text file and enter it to build the level without generation. In
the level seed, each character represents one tile, the character representing the object

inside the level.

36

Chapter 5 — Generator Concept

5.3 Grammar Generation

The generator is largely based on the grammar-based approaches analysed in section
4.3, following the original approach of Dormans (2010) closely. However, within the
scope of this thesis, graph grammar generation has not been implemented. Instead, to
enable more opportunities in terms of control, an approach similar to the method pre-
sented by Hartsook et al. (2011) has been used, where designers can define a sequence

of missions in order.

5.4 Alphabet

The grammar’s alphabet consists of the many object types able to be placed inside the
level. Additionally to only the corresponding ASCII character, the alphabet object has
also been given the type of tile the ASCII character represents and the blueprint actor
class representing the object in the final level when built. For example, tiles could be
“wall”, “floor”, “enemy”, “key”.

It is important to note that not all tile types correspond to object types in the final
level. Some tile types are only relevant for the level generation process and not objects
being placed in the level. These tiles would be “start”, “padding”, “connection”, and
“closed connection”. The “start” tile is responsible for the spawn of the player, marking
the start position in the level. Tiles of the “padding” type only serve the purpose of
making seeds that represent nonrectangular structures rectangular. This provides the
opportunity to define nonrectangular shapes in the design process, leading to much
more control in the design process, similar to Dungeonmans (Adventurepro Games
LLC, 2014). Connections function the same way the connections in the approach de-
scribed by Dormans (2010), serving as anchor points new rooms can attach to. A
closed connection is a connection that is not enabled, thus being excluded from being
chosen to attach a new room to the structure. The purpose of this further explained

in section 5.7.

5.5 Rules

Grammar rules consist of one LHS and one or multiple RHS. Each LHS and RHS is
presented by a pattern object. These pattern objects hold multiple types of data:

Tile type

Seed

Seed dimensions

Tiles information

37

Chapter 5 — Generator Concept

o Numbering seed

This data is relevant information for the generator to properly apply grammar rules to
the seed.

5.5.1 Pattern Seeds

The pattern seed holds the information about the actual object that would be placed
inside the level. This is the tile-pattern that will replace the previous pattern inside
the seed, when chosen to be applied

This seed will always be rectangular. To guarantee a rectangular seed while still defin-
ing a nonrectangular pattern, one can use the previously mentioned “padding” tiles,
which are not objects to be placed and only exist to make the seed rectangular. This
is necessary to provide relevant functions, like locating characters inside the seed at a
certain position or converting the index of a character inside the seed to be represented
as a grid slot, providing the column and row in which the desired character can be

found inside the seed.

5.5.2 Seed Dimensions

The seed dimension of a pattern holds information about the number of columns and
rows the rectangular seed consists of. This is essential to calculate grid slot information,
since seeds are not kept in there rectangular form, but will be transformed into “straight
seeds”, getting rid of all newline characters, making them more compatible with the
generation process.

5.5.3 Tiles Information

A pattern also holds information about all the tiles it contains. Every tile object

possesses multiple properties:

o Tile type: The type of the tile.

e Character: The ASCII character it holds.

e Grammar numbering: The tile’s number in the numbering seed. Only the key
character will be numbered. This helps finding the key character of a rule by

searching for the tile with “1” as the grammar numbering.
o Index in string: The index of the tile inside the seed.

« Position in grid (grid slot): The position of the tile as a grid slot, saying in what

row and column of the pattern seed the tile is located.

» Relative position to key character: The position of the tile, relative to the pat-

tern’s key character.

38

Chapter 5 — Generator Concept

5.5.4 Numbering Seeds

Numbering seeds are essential for the pattern detection process. They have the exact
same dimensions as the pattern seed, but mark one character as the key character.
This is done by using the character “1” as tile, instead of the character that would
represent the object itself. This numbering process is similar to the node numbering
mentioned by Dormans (2010). By marking one tile as the key characters, patterns
will provide a starting point all the other tiles can refer to, helping with coordinating
the pattern structure when detecting a pattern, inserting a pattern, and checking if the

pattern would fit into the seed in the first place.

5.6 Seed Setup

Before the generation process starts, all specified rules will be prepared in a setup pro-
cess, preparing the rule’s patterns for the generation process and calculating necessary
information. This process will first calculate the seed dimensions, using the newline
characters in the seed. Then the seed will be “straightened”; getting rid of all newline
characters to make it readable for grammar generation. Afterwards, every tile’s tile
information, as explained in section 5.5.3, will be calculated and saved in the rule. For
the tiles information, it will also be calculated what relative position tiles have to the
seed’s key character. This will be important for pattern detection, replacement and
insertion. Additionally to the calculation of all the rule’s information, the setup process
will also create versions of every rule rotated by 90°, 180°, and 270°. This makes rule’s
be independent of the rotation they have been designed in, practically making them
able to be rotated so they fit with any of the four angles.

This setup process makes it easy to design rules, only giving the designer the task to
define a seed and the seed’s key character with the numbering seed. Since the seed
will be transformed to a straight seed automatically, designers can design the seed as

rectangular, which represents how it would look inside the level.

5.7 Mission

As stated in section 5.3, the procedural generation of a mission using graph grammars
has not been implemented. Mission do, however, exist inside the generator and can be
specified. Instead of being based on graph grammars, for missions, it has instead been
taken inspiration from Hartsook et al. (2011). One can build a mission by defining a
sequence of mission symbols. With this, the end result will not be much different com-
pared to Dormans (2010) approach, since the mission there, even though it originally
is a graph, also results in a sequence of symbols. This makes the only difference that

missions will not be procedurally generated, but instead entirely crafted by hand.

39

Chapter 5 — Generator Concept

Similar to tiles, there are two different types of mission symbols, symbols that represent

rooms in the dungeon and symbols that only exist for generation purposes.

5.7.1 Room Mission Symbols

Room mission symbols are responsible for building the dungeon’s architecture. All of
these symbols have a rule set tied to them, the rule set being created and set by the
designer. The designer can define multiple different mission symbols that will tell the
generator to place rooms defined in the rule set that is tied to the mission symbol. For

example, mission symbols could be “entrance”, “loot”, “enemies”, “key”, “item”, or
“goal”. The designer can model multiple rooms in the rule sets tied to these mission

symbols, which will then be randomly chosen to be placed.

5.7.2 Generator Mission Symbols

Compared to room mission symbols, generator mission symbols work different. They
exist to provide more control over the branching of the dungeon and order of rooms.
They also give the designer the opportunity to specify in what order the player should
come across certain rooms. This is important when wanting to implement the level
design pattern of encouraging exploration (section 3.3.2).

First, there is the “close all connections except last room” symbol. As mentioned
in section 4.3, this is an idea already considered by Dormans (2010), presented as a
method to prevent “accidently connecting the final room to a room near the entrance”
(Dormans, 2010). Closing all connections except the ones in the last room assures that
every placed room from that point on will be only reachable by traversing the room
placed before the symbol was used. In addition to that, there is the “toggle connections”
symbol. This symbol can open or close connections of a specified room. The designer
can specify the target room in the mission symbol itself. Closed connections will not be
able to connect a new room to the dungeon. Tight coupling, as proposed by Dormans
(2010) and covered in section 4.3, has also been implemented in the generator. For this
generator, however, its functionality has been expanded, allowing designer to specify
which target room the room should be tightly coupled to. This allows the designer to
force a room to connect to a connection of the last placed room.

In addition to the branching settings, mission symbols also have a value that defines

how often a room should be evolved.

5.8 Room Evolution

After the dungeon rooms have been generated, the room evolution process starts. This

process applies as separate set of evolution rules to each room.

40

Chapter 5 — Generator Concept

5.9 Rules Application

When the generation has been initialized, an empty seed with a connection symbol
at the center will be generated. The dimensions of the seed are set in the generator’s
settings. This connections symbol will serve as the starting point for the first placed
room to connect to. To build the dungeon, the generator will go through the specified
mission sequence. For each mission symbol in the mission sequence, one grammar
iteration will be ran. Each grammar iteration, the generator will search for rules that
can be applied to the level. This is done by first getting every slot in the seed that holds
a character appearing as the key character in the LHS of a rule. Then, for each slot,
it will be checked which of these rules hold a pattern on their LHS that it is actually
present in the seed at that exact spot. These rules will be saved.

Subsequently, for every rule, it will be checked if its RHS’s will be able to be inserted
in the seed without overlapping other tiles. This will exclude tiles of the pattern about
to be replaced. For every rule, fitting RHS will be saved as candidates.

Lastly, to apply a rule to the generation, one random rule will be selected. If the
selected rule has multiple RHS that are candidates, one random RHS will be chosen.
With the application of the rule, every seed tile included in the rule’s LHS will be

replaced by the chosen RHS. This process can not only add, but also remove tiles.

5.9.1 Pattern Detection

To detect a LHS pattern inside the seed, an algorithm has been written using the
relative position of tiles that is stored in the pattern’s tile data and was calculated
beforehand. In this process, tiles in the pattern will be compared to tiles in the seed,
relative to the seed slot that is currently checked. If every tile is identical, the LHS is

marked as found inside seed.

5.9.2 Replacement Check

To replace a pattern, it will be first checked if the necessary space is available. This
process ignores all empty space tiles and tiles that belong to the pattern that would
have to be replaced, if the rule would be chosen. The algorithm iterates through every
tile that would be added to a slot not already possessed by previous pattern, checking it
would place a tile on another tile that belongs to a different pattern. If that is the case
for any tile, the RHS of this rule will be discarded and not be marked as a replacement

candidate.

5.9.3 Pattern Replacement

After every rule that includes a LHS found in the seed and an RHS able to fit into
the seed, has been found , a random rule will be applied. To replace the pattern,

the pattern’s relative tile information will be used again, inserting the RHS of the

41

Chapter 5 — Generator Concept

chosen pattern to the level seed. To provide the ability to change tiles of pre-exising
patterns, instead of only adding new ones, tiles of the previous pattern (LHS) will also
be overwritten.

For room placement, all newly placed tiles will be saved as an additional pattern, only

storing the room. This is needed for the grammar evolution inside the separate rooms.

5.10 Level Building

After the seed has been generated, the level will be build using the associated objects

to be placed along the previously mentioned grid.

42

Chapter 6

The Humanized Level

This chapter will cover how the humanization techniques inhabiting level has been
generated. This level will be referred to as the "humanized level” (Figure 6.4). To
build the 3D representation of the level, assets from different asset packs have been
used (Miguel Lobo, 2019; Rick N. Bruns, 2023; Rick N. Bruns, 2019a).

6.1 Game Concept

To conceptualize the generator, it was evident that a game concept was required. Be-
yond the fact that one can only generate a level when a game concept is present,

furthermore, to evaluate, it was also mandatory to be a level able to be played.

Since research already focused on dungeons and more importantly the structure of
those found in Zelda games, the game concept to generate a level for, would also be
very close to the gameplay of a Zelda game. Largely based on the analyses presented
in section 3.1, the game concept would consist of multiple key aspects that define
the gameplay of Zelda games. Around these key aspects, a small game called “Sword

Quest” has been conceptualized.

6.1.1 Game Dimension

The game is three dimensional. Although top down games originated in a two dimen-
sional space (Epyx, 1980; Nintendo, 1986), a top down game is only defined by its top
down camera view.

The fact that the previously done research about level design was largely based on
The Legend of Zelda: A Link to the Past Nintendo, 1991, a 2D game, will also not
be problematic, since the analysed level design techniques are independent of the di-
mensions they are used in. Another reason why the shift in dimension will not affect
the research, is that, while games like The Legend of Zelda: A Link to the Past are
essentially 2D, they do, in fact, simulate a third dimension in 2D space. This makes
the translation of the research done on 2D games to 3D unproblematic. An example
for this is The Legend of Zelda: Link’s Awakening (Nintendo, 2019), which is a 3D
remake of The Legend of Zelda: Link’s Awakening (Nintendo, 1993) for the game, a

43

Chapter 6 — The Humanized Level

game that was originally 2D.

It is important to note that, to keep experiments simple, the level to be generated will
not make use of the third dimension in terms of gameplay. Despite the game using
3D assets, it will still function the exact same as a 2D game, being strictly projected
on a 2D grid. While some objects, like walls, will be higher than others to model the

architectural space, they are non-interactable and only for visual purposes.

6.1.2 Camera Perspective

Since this research is about top down games, the view of the game would also be in
the same perspective. It is to note that the game view is not entirely top down, but
instead tilted by a small degree, to get a better view of the 3D models making up the

level, making identifying them much easier.

6.1.3 Player Character

The character’s movement was held simple. When looking at the character abilities
featured in The Legend of Zelda:A Link to the Past (Nintendo, 1991) the character’s
abilities are mainly provided by the collected items, expanding the characters abilities
a lot. Without any collected items however, the character can only walk (Nintendo,
1991). Since the generated level would follow this very same structure of expanding
the character abilities by using items, the basic movement abilities are only walking.

The player character has five health points and can be damaged. It the player health
reaches zero, he will die and respawn at the beginning of the level with restored health

points. The death of the player will not reset the level.

6.1.4 Locks and Keys

Since locks and keys were a big part of the research done in this thesis (Dormans and
Bakkes, 2011)(Ludomotion, 2017), they will also be included in the game’s mechanics.
They will work in a simple way, where player just has to walk through the key to pick
it up. It will then be automatically be added to the player’s inventory, automatically
unlocking the locked door if he stands next to it. Only one key and one locked door

will be present in the level.

6.1.5 Items

Like already mentioned, items play an significant in a Nintendo, 1986-2023 dungeon.
Dormans (2010) presented the importance of items, by emphasizing that they can not
only be used as a weapon, but as a key as well. Since this generator has the goal
to implement this concept into the generated level, the player will be able to pick up
an item. This item will be a tool for players to defend themselves, but also will be
mandatory to be used to progress through the level. As soon as players acquire the

item, they will gain the ability to shoot projectiles. This projectile can be used as

44

Chapter 6 — The Humanized Level

many times as the player desired. This is, however, restricted to an ability cooldown,

so the player can only use the ability in a specified frequency.

6.1.6 Enemies

While traveling through the dungeon, the player will encounter enemies. These enemies
are stationary and, similar to the player, also have the ability to shoot projectiles. They
will only shoot if the player is near them, within a specific range. If a projectile hits
the player, they will lose one health point. Additionally, player will also lose one health
point, if they touch an enemy. Enemies have only one life point and, when hit by the

player’s projectile, die and get destroyed immediately.

6.1.7 Rewards

To provide some type of additional, but optional, loot to the player, they can collect
potions. These potions will restore health that has been lost in enemy combat. One
potion will restore one health point. Potions are only found in reward-rooms. These
rooms exist to reward players that take a risk by exploring the level more than one

needs to, inhabiting potions to heal the player by a high amount.

6.1.8 Boss

To finish the level, players have to beat the dungeon boss. This is an enemy very
similar to the ones distributed across the dungeon, with more health points and also
stronger and bigger attacks. If the boss is defeated, it will drop an escape portal that,

when entered, makes the player finish the level.

6.2 Level Concept

This section will cover how the level for Sword Quest has been designed, talking about

the alphabet and rules that have been set up and how they were used.

6.2.1 Alphabet

Apart from the default generator tiles, the grammar alphabet consists of architectural
tiles like "ground”, "wall”, ”door”, "lock”, "hole”, "fence”, and "pillar”. The empty
space tile has been used for walls, filling out everything where nothing has been placed,
effectively closing rooms. Walls are not traversable. The separate wall tiles were
actually not used but were originally planned to be walls that could not be overwritten,
which is not the case for empty space tiles. Door tiles use the same objects that ground
tiles did but serve the purpose of still being able to identify connections between rooms
after rooms have been generated. This is important for the room evolution. The lock
tile represents a locked door that can only be opened when players possess the key.

Holes are walls that represent a hole in the floor, acting the same as walls. Fences

45

Chapter 6 — The Humanized Level

and pillars are non-traversable tiles that can be placed within a room. Fences use an
event that automatically rotates them correctly after the level generation process is
finished. If the algorithm detects a corner in the fences, that fence gets replaced with a
pillar tile, which is actually not placed during the generation process. It is important
to note that connections also use the wall object, which effectively closes rooms with
open connections remaining after the generation process is finished.

As for non-architectural tiles, there are “enemy”, “key”, “ability”, “potion”, “boss”,
“potential enemy”, “potential potion”, and “goal”. Key and ability tiles are only placed
once in a level, representing the key to the locked door and the ability players can defend
themselves with, which is represented by a sword. Enemy tiles represent the enemies
attacking the player, while potion tiles represent potions that heal the player when
collected. The potential enemy and potential potion tiles serve the purpose of not fully
representing an enemy or potion placed in the level but can be evolved into one during
room evolution. Lastly, the boss tile represents the boss necessary to defeat, which

leaves behind the goal that the player needs to collect to beat the level.

46

Chapter 6 — The Humanized Level

4 Alphabet

40

3 members -

mbers

c |
[« © + x
-

-

[« o + x

3 -

3n ers v
s |
€0+ x

3 members

TileClass CAITERY « O + X

Figure 6.1: Part of the designed grammar alphabet

6.2.2 Mission Symbols

For mission symbols, which, except for the default ones used to steer generation, rep-
resent rooms, there are “entrance”; “key”, “ability”, “small exploration”, “big explo-
ration”, “maze”, “enemy lock”, “room after enemy lock”, “reward room”, “lock”, and
“boss”. The entrance contains the “player start” tile and is a neutral room where the

player can safely spawn. The exploration rooms are rooms containing enemies and

47

Chapter 6 — The Humanized Level

potions. The key and ability rooms contain their associated items. The enemy lock
room is a room where enemies stand in the way of the player, stopping them from
progressing to the next section. The “room after enemy lock” room is located right
behind the enemies that block the door and contains potions. Mazes are rooms where
enemies and potions are located at the ends of its branches and where players have to
find their way to the next room. The lock room is a neutral room containing nothing
but a locked door, which leads to the boss room, where players have to fight the boss.
Lastly, there is the reward room, which is a room containing only potions. All rooms

are identical in shape and size, except for the maze, big exploration, and boss rooms.

48

Chapter 6 — The Humanized Level

5 members v

5 members v

SmallExploration ¥

5 members -

SmallExploration ¥

5 mem

5m:

CloseAllConnectionsExceptLastRoom v

ReomE

TightCouplin

Type

TightCouplin

Figure 6.2: Part of the designed mission sequence

6.2.3 Rules

Room rules mainly have a single connection symbol in their LHS so they can attach to
a room with open connections. An exception to this is the boss room, which can only
connect to a lock tile. The RHS of their rules containt rooms in different variations,
only differing in the objects they contain and not in size. For example, exploration

rooms differ in the positions of the enemies and potions that will later be evolved and

49

Chapter 6 — The Humanized Level

potions are not included in every exploration room. The maze uses the potential enemy
and potential potion to increase variety in the entirely predesigned maze structure.
The reward room and “room after enemy lock” room rules contain different variations
containing random potion patterns and amounts of potions.

The room evolution rules contain patterns that will evolve enemies and potions. Evolv-
ing these will always result in a pattern that contains more enemies than before. One of
these rules uses fences and pillars to guard the enemies inside them. They also contain
rules to evolve the key and the ability to place enemies around them. The door tile

has been used to create rules that place and evolve enemies blocking it.

2 members

Figure 6.3: A rule to place a small exploration room

20

Chapter 6 — The Humanized Level

6.2.4 Level Runthrough

Figure 6.4: Humanized level

The player will spawn at the entrance. From here, they are free to explore the dungeon.
At the beginning, players can not defend themselves and have to dodge the enemies’
projectile attacks. The first key destination is the enemy lock room, where enemies
are blocking the way to the next room. This plans to encourage the player to look for
something that will make him get past the enemies. This will make players pass a bigger
room with more enemies, making it more dangerous than other rooms. Afterwards,
they will come across the maze (Figure 6.5). In this maze, they need to figure out the
way to the next room, while being attacked by enemies. The maze randomly places
enemies and health potions at the ends of its branches, which results in some hearts
being accessible with the risk of being attacked by other enemies and some potions
being protected by enemies, making them impossible to reach yet. After the player
finds the exit of the maze to the next room, they reach the room where the sword is
placed (Figure 6.5), which gives them the ability to shoot projectiles as well, which
they can use to defend themselves against enemies. The sword itself is also guarded by
enemies, making it a challenge to acquire it. After acquiring the sword, the player can
now make their way back to the enemy lock room to defeat the enemies blocking the
way. On their way back through the maze, they have the opportunity to recover health

points by defeating the enemies blocking a health potion on the other maze branches.

o1

Chapter 6 — The Humanized Level

Figure 6.5: Maze that leads to the sword

After defeating the enemies blocking the path, they can enter the second segment of
the dungeon and get a random amount of health potions to collect. Next, players
will reach the room with a locked door, encouraging them to search the dungeon for
the key. Like in the first dungeon segment, the player must now again cross a big
exploration room to find the key. This big exploration room, however, will have a
reward room attached to an exploration room. This will reward players for taking the
risk of proceeding through these rooms. Another room directly attached to the big
exploration room space will include the key, which is protected by enemies, similar to
the sword (Figure 6.6). After acquiring the key, the player can go back to the locked
door and go through it.

Figure 6.6: Key, protected by enemies

They will then enter the boss corridor with the boss room attached at its end (Figure
6.7). After defeating the boss, it will spawn the level goal, and the player can complete
the level. The entire dungeon structure has exploration rooms randomly placed in
parts of the dungeon, giving the level a higher exploration value and to providing the

possible scenario of players not walking in the right direction the first time.

52

Chapter 6 — The Humanized Level

Figure 6.7: Boss room

To design the level, the branching structure of the dungeon was first sketched on paper
as a graph. This branching structure mainly represented the segments of the dungeon
that have been generated with the bottleneck rooms, which were the “room after enemy
lock room” that would start the next segment. Optional exploration rooms have also
been included in the graph, but their actual branching would not be determined. It

was only the number of rooms per section that was specified.

6.2.5 Applied Humanization Techniques

Many of the researched humanization techniques have been tried to be applied through

the design of the level. This segment will present how this has been done.

Gamespaces

Many different gamespaces that were mentioned in section 3.3.1 have been utilized.
Most of the rooms are narrow refuges. The big exploration rooms represent big prospect

spaces. As already mentioned, a maze has also been included in the level.

Critical Path

It has been tried to achieve a similar branching nature as the one presented in the
analysis done by Stout (2012). The goal was to have critical path with optional rooms.

For this, the previously mentioned generator’s branching tools were used.

Kihon-Structure

A structure similar to the kihon-structure Dormans (2010) found in their analysis
(section 3.1.1) has been recreated using the generator’s branching tools. This structure
also lets the player first encounter the enemy lock room, which they can only pass after
acquiring the sword that lets him defeat the enemies blocking the way. With this, the
concept of using items as keys has been implemented. This indirectly teaches him how
to use the weapon. The boss serves the purpose of testing how well the player learned

to use the weapon.

23

Chapter 6 — The Humanized Level

Increasing Difficulty

Additionally, an increase in difficulty has been implemented. This works through the
room evolution, which gradually adds more enemies with every evolution step. With
this, one can specify an increase in difficulty by increasing the evolution steps of rooms

towards the end.

Difficulty Breathing

Difficulty breathing has been implemented in the form of gamespaces. Big exploration
rooms, which represent prospect spaces, contain more enemies than small exploration
rooms, which represent refuges. Additionally, the maze is also supposed to be a more

difficult segment than the rest of the dungeon.

Encouraging Exploration

Unfortunately, since the functionality of reconnecting rooms like presented by Dormans
(2010) could not be implemented within the scope of this project, zen views, as dis-
cussed in section 3.3.2, could not be implemented in the generated level. However, the
concept of ensuring that the player comes across the lock before the key, as presented
by Dormans and Bakkes (2011), has been used as a substitute, since it essentially has
the same effect of encouraging the player to explore. This is done by hinting to the

player that a reward, in this case the sword or key, is somewhere in the level.

Objective-Challenge-Reward

Structures of objective-challenge-reward have also been implemented. This mainly
revolved around the sword and the key, which reward the player with progress or
a new ability. In the example of the sword, players are first given an objective by
encouraging them to explore the dungeon through the enemy lock, then faced with a

challenge, which is the maze, and lastly rewarded with the sword.

Object Purpose & Object Structure

Rules have been set up in such a way that many of them serve the purpose of protecting
something. The previously mentioned rules that make enemies block doors stand in
the player’s way of progressing to the next room. Enemies that evolve from potions
will also always be positioned in a way that they protect that potion.

Room rules have generally been set up in a tidy structure and evolution rules always

evolve in a symmetrical manner.

o4

Chapter 6 — The Humanized Level

Balancing Risk and Reward

In the dungeon, players rarely get something without a challenge, which creates a
balance between risk and reward. Since potions are mostly protected by enemies,
players always take the risk of losing health when trying to acquire them. Additionally,
players risk losing health when exploring the branches of the maze or trying to acquire
the potion at their ends. The reward room also creates a balance between risk and
reward by rewarding players for exploring an area of the dungeon where no key is

found.

Player Emotion

Similar to the technique mentioned in section 3.3.3, the maze here also serves the role
of using player emotion when player’s lost much health beforehand. Similar to the
example in The Legend of Zelda: A Link to the Past (Nintendo, 1991), here, players

also get rewarded with a new tool when finding their way through the maze.

Giving the Player Hints

Giving the player a hint has been implemented in a similar manner to the boss corridors
mentioned in section 3.3.6. Here, the boss room also has a long corridor signalizing

that a strong enemy might be at the end, giving players time to prepare.

6.3 Evaluation

6.3.1 Non-humanized Level

Additionally to the humanized level, a level without any humanization techniques has
been created (Figure: 6.8). This has been done by creating a separate set of rules,
generating everything almost entirely random. Also, the alternation in gamespaces has
been completely left out, only using rectangular rooms identical in size. Since the level
was randomized and there was no enemy lock, to let players not be able to enter the
boss room by finding the key before the sword, the functionality has been added that
the locked door only opens when players possess both items. The purpose of this level
is to serve as a negative example, compared to the humanized level, assuring more

accurate evaluation results.

25

Chapter 6 — The Humanized Level

Figure 6.8: Non-humanized level

6.3.2 Evaluation Method

For evaluation, testers between the ages of 20 and 28 were invited into a room providing
a PC and the playable levels, so every test would be done under the same circumstances.
8 of the testers were male, 2 were female. Since many of the humanization techniques
were advanced level design methods, all testers were required to have experience playing
video games. Beforehand, the rules and controls, of the game have been explained.
Testers could use the “W”, “A” “S” and “D” keys to walk around and the spacebar
to attack as soon as they had collected the sword. To evaluate the handcraftedness of
the generated level, testers were given both levels to play.

Evaluated were the following aspects:
o Flow
» Balance of risk and reward
o Player Emotion
o Encouragement to explore
e Structure and symmetry
o Enemy purpose
« Giving the player hints
o Resemblance to dungeons from Zelda games

56

Chapter 6 — The Humanized Level

o If testers thought the level was created by a human or an algorithm

To evaluate the flow of the level, questions have been asked regarding clear goals,
if they ever felt lost, difficulty scaling, difficulty breathing, and if the structure of
objective-challenge-reward was present. To evaluate the balance of risk and reward,
testers were asked how rewarded they felt for taking certain risks, including the risk
taken when exploring the dungeon. For player emotion, players have been asked how
they felt when wandering through the maze. The questioning regarding encouraging
exploration focused on if players encountered something encouraging them to explore
the dungeon, like the enemy lock and the locked door. Structure and symmetry were
evaluated by how symmetrical and structured testers perceived the enemy and potion
patterns. Regarding enemy purpose, testers were asked if they felt like enemies stood
in their way of getting where they wanted. Testers were asked how surprised they
were by the boss when going through the locked door. The use of gamespaces was
not evaluated individually, but rather through the aspects of difficulty breathing and
player emotion, which it results in.

Additionally to the other questions, testers were also asked two more general questions.
First, they were asked if they have played a Zelda game. If they had, they were asked
how closely they think the humanized level resembled a dungeon from The Legend of
Zelda. Lastly, testers were asked if they ultimately think whether the level had been
created by a human or if it was generated. All questions have been asked after the
completion of each level.

It was originally planned to let testers first play the non-humanized level. However,
testers would expect the boss after playing the first level, when encountering the locked
door in the second level. This would result in inaccurate evaluation results. To avoid
this, 5 of the 10 testers have been given the humanized level first. The other 5 testers

were given the non-humanized level to play first.

6.3.3 Evaluation Results

In all categories, the humanization techniques implemented in the level were much
more recognized by the testers in the humanized level than in the non-humanized level.
However, 3 of the 10 testers have stated that they have not seen many differences in
the object structure and symmetry. Testers felt much more rewarded for taking risks
when playing the humanized level than when playing the non-humanized level. 9 of the
10 players were encouraged to explore further when meeting the enemy lock and the
locked door in the humanized level. They also understood what to do, which shows
that players got given clear goals. Out of the 10 testers, only 2 claimed that they
encountered things encouraging them to explore. 5 of the 10 testers felt lost in the
non-humanized level at some point. For the humanized level, not one of the testers
stated that they ever felt lost. Regarding the boss, 3 of the 5 testers that were to first

play the humanized level had a feeling they were to encounter the boss. On the other

57

Chapter 6 — The Humanized Level

hand, every single one of the testers who were first given the non-humanized level was
surprised that the boss appeared and felt unprepared. Regarding player emotion, 4
of the 10 testers stated that they were nervous to die when encountering the maze.
Testers stated they felt an increase in difficulty and also noticed difficulty breathing in
the humanized level. Only 2 testers felt this was present in the non-humanized level.
A presence of enemies blocking the player was acknowledged by all testers when asked
about the humanized level. However, 5 testers agreed that this was also the case for
the non-humanized level. Lastly, although many testers were not sure whether or not
the non-humanized level was created by a human, all of them were convinced that the
humanized level was.

All of the 4 testers that have played a Zelda game before stated that they saw a high
resemblance to their dungeons in the humanized level, one person even mentioning a
specific one they got reminded of while playing. This was not found to be the case for

the non-humanized level.

6.4 Discussion

It is to conclude that the found methods of vertical and horizontal handcrafted integra-
tion (section 4.1) and the grammar approaches presented in section 4.3, were efficient in
implementing the humanization techniques. Encouraging exploration, balancing risk
and reward, giving the player hints, object purpose and using player emotion were
found to be very present in the humanized level and lacking in the non-humanized one,
which already shows the presence a high handcraftedness. Generally, the presence of
flow was also much more perceived in the humanized level. The results also conclude
that the humanized level possesses a structure similar to Zelda game dungeons, proving
that the structure of Zelda dungeons has been successfully incorporated. When telling
testers that the humanized level was created by an algorithm, many were surprised.
This validates that the overall level could easily be mistaken for a handcrafted level.
However, when looking at the results of the evaluation, it becomes clear that the
handcraftedness of the humanized level was not optimal. This results from some testers
perceiving it as having a similar structure to the non-humanized level, which also
applies to object purpose. A potential reason for the lack of symmetry and structure
could be the enemies blocking doors, which seem to merge with the other enemies in
the room, breaking up the structure.

Although the generator generally proved to be efficient in generating levels with re-
markable handcraftedness, it is clear that there are still some flaws to be improved.
However, it is important to separate the generator from the design of the mission se-
quence and rules. A lot of problems could stem from design issues that have nothing
to do with the generator itself, since the outcome is almost entirely independent of the
designer. Dormans and Bakkes (2011) stress that grammar rules are difficult to set up

and need a longer time to be effective. Due to this not being possible within the scope

o8

Chapter 6 — The Humanized Level

of this thesis, there is still a lot of improvement expected from designing better rules,

which could improve the handcraftedness of generated levels much more.

29

Chapter 7

Conclusion & Future Work

7.1 Conclusion

This thesis followed the goal of creating a generator that can generate top-down levels
that seem as they had been made by a human and not by an algorithm. This goal
has been followed by defining and analysing characteristics being used in professional
level design, to be subsequently implemented these in the generator. Additionally, it
was first necessary to research about what kind of generators and methods would allow
these characteristics of handcrafted levels to be implemented. The result was a mixed-
initiative generator combining numerous of techniques allowing control over different
aspects of the generation process, able to implement the researched humanization tech-
niques and even resembling the dungeon structure found in Zelda games games. This
thesis presented a successful method to achieve the goal of generating levels that are

similar to handcrafted ones.

7.2 Future Work

It would be interesting to see the generator’s results when using rules that are more
polished and thought through. With that, one could probably improve the generated
handcraftedness a lot more. These improved rules could create more complex and in-
teresting patterns. The generator would also benefit from the implementation of more
variations in the dungeon rooms. This could also implement architecture within the
rooms, which has barely been done in this thesis. A main issue in this generator was
the lack of the dungeon’s ability to reconnect, which made it difficult to implement
zen views and thus could not be evaluated. Solving this issue would open up a lot
more possibilities to improve the handcraftedness of levels. This is also a major aspect
where the work on this project could continue. The level feelings in Spelunky (Moss-
mouth, 2008) are an interesting technique that the generator would also benefit from.
Furthermore, generation times did not turn out to be very short, which is unfavorable
for a constructive generator. This problem, however, could be easily solved by moving
the code into C++ classes, which are currently almost entirely inside Unreal Engine’s
blueprints, resulting in the code running much faster. Currently, mission symbols are

entirely based on human input. Adding a degree of randomness to these symbols can

60

Chapter 7 — Conclusion & Future Work

contribute to a higher variety in the generated content, without changing the input.

There are also many ways one could continue this research. First, one could apply this
generator to a bigger game with more content and different enemy types, creating a
lot more opportunities to create grammar rules around them, creating different enemy
formations, for example. Since, to incorporate the level design patterns, the generator
was restricted by hard constraints, it could be evaluated in terms of variety in the
generated content and be improved in that regard. A potential way to improve the
handcraftedness of the generated levels even more would be to combine the grammar-
based generator with a search-based approach, as recommended by Dormans (2010).
Applying this generator to a different domain than a top-down game, for example, a
third person game, is also something where a lot of research could be done. Researching
additional humanization techniques to be implemented would surely result in improved

handcraftedness as well.

61

Bibliography

Adventurepro Games LLC. (2014). Dungeonmans [Steam].

Atari, N. (1972). Pong [Arcade].

barbs. (2006). Dungeon crawl stone soup [PCJ.

Blizzard Entertainment, B. N. (1996). Diablo [PC].

Capcom, L. (1987). Mega man [Nintendo Entertainment System)].

Chen, J. (2007). Flow in games (and everything else). Communications of the ACM,
50(4), 31-34.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experinece harper peren-
nial.

Devolver Digital. (2016). Enter the gungeon [Steam].

Dormans, J. (2010). Adventures in level design: Generating missions and spaces for
action adventure games. Proceedings of the 2010 workshop on procedural content
generation in games, 1-8.

Dormans, J. (2011). Level design as model transformation: A strategy for automated
content generation. Proceedings of the 2nd International Workshop on Procedural
Content Generation in Games, 1-8.

Dormans, J., & Bakkes, S. (2011). Generating missions and spaces for adaptable
play experiences. IEEE Transactions on Computational Intelligence and Al in
Games, 3(3), 216-228.

Edmund McMillen, H. G. (2011). The binding of isaac [Steam].

Epyx, M., Artificial Intelligence Design. (1980). Rogue [PC].

Feil, J., & Scattergood, M. (2005). Beginning game level design. Thomson Course
Technology.

Green, D. (2016). Procedural content generation for c++ game development. Packt
Publishing Ltd.

Gutierrez, J., & Schrum, J. (2020). Generative adversarial network rooms in genera-
tive graph grammar dungeons for the legend of zelda. 2020 IEEE Congress on
Evolutionary Computation (CEC), 1-8.

Hartsook, K., Zook, A., Das, S., & Riedl, M. O. (2011). Toward supporting stories with
procedurally generated game worlds. 2011 IEEE Conference on Computational
Intelligence and Games (CIG’11), 297-304.

Hello Games, Sony Interactive Entertainment. (2016). No man’s sky [Steam].

62

BIBLIOGRAPHY

Hendrikx, M., Meijer, S., Van Der Velden, J., & losup, A. (2013). Procedural content
generation for games: A survey. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 9(1), 1-22.

Johnson, L., Yannakakis, G. N.; & Togelius, J. (2010). Cellular automata for real-
time generation of infinite cave levels. Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, 1-4.

Joris Dormans. (2016). Cyclic dungeon generation. Youtube. https://youtu.be/c__
adpxIFqh0

Kate Compton. (2017). Practical procedural generation for everyone. Youtube. https:
//youtu.be/ WumyfLEa6bU

Ludomotion. (2017). Unexplored [Steam].

Mawhorter, P., & Mateas, M. (2010). Procedural level generation using occupancy-
regulated extension. Proceedings of the 2010 IEEE Conference on Computational
Intelligence and Games, 351-358.

McMillen, E. (2010). Analysis: Mcmillen on risk € reward in video games. Retrieved
June 2, 2023, from %5Curl%7Bhttps://www.gamedeveloper.com /pc/analysis-
memillen-on-risk-reward-in-video-games%7D

Miguel Lobo. (2019). Low Poly Dungeon Asset Pack. Retrieved March 28, 2023, from
%5Curl%7Bhttps: //www.unrealengine.com/marketplace /en-US /product /low-
poly-dungeon-asset-pack%7D

Mojang. (2008). Minecraft [PC].

Mossmouth, M. S., Xbox Game Studios. (2008). Spelunky [Xbox 360].

Nintendo. (1986). The legend of zelda [Nintendo Entertainment System)].

Nintendo. (1991). The legend of zelda: A linkt to the past [Super Nintendo Entertain-
ment System].

Nintendo. (1993). The legend of zelda: Link’s awakening [Nintendo Entertainment Sys-
tem].

Nintendo. (1994). Earthbound [Super Nintendo Entertainment System].

Nintendo. (2006). The legend of zelda: Twilight princess [Nintendo Gamecube].

Nintendo. (2019). The legend of zelda: Link’s awakening [Nintendo Switch].

Nintendo. (1986-2023). The legend of zelda.

Re-Logic 505 Games. (2011). Terraria [Steam].

Rick N. Bruns. (2019a). Free Easy Enemy Pack. Retrieved May 16, 2023, from %5Curl%
7Bhttps://quaternius.itch.io/animated-easy-enemies%7D

Rick N. Bruns. (2019b). The legend of zelda: A link to the past d02: East palace (pendant
1) labeled map - super nintendo (snes). Retrieved May 28, 2023, from %5Curl%
7Bhttps://www.snesmaps.com/maps/ZeldaALinkToThePast /Zelda3MapD02.
html%7D

Rick N. Bruns. (2019¢). The Legend of Zelda: A Link to the Past D03: Desert Palace
(Pendant 2) Labeled Map - Super Nintendo (SNES). Retrieved May 28, 2023,

63

BIBLIOGRAPHY

from %5Curl%7Bhttps: / /www.snesmaps.com /maps/ZeldaALinkToThePast /
Zelda3MapD03.html%7D

Rick N. Bruns. (2019d). The Legend of Zelda: A Link to the Past D06: Dark Palace
(Crystal 1) Labeled Map - Super Nintendo (SNES). Retrieved May 28, 2023,
from %5Curl%7Bhttps: / /www.snesmaps.com/maps/ZeldaALinkToThePast /
Zelda3MapDO06.html%7D

Rick N. Bruns. (2023). Kubes - Kube Dungeon KIT. Retrieved March 28, 2023, from
%5Curl%7Bhttps:/ /assetstore.unity.com/packages/3d/environments/dungeons/
kubes-kube-dungeon-kit-246794%7D

Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural content generation in
games.

Short, T., & Adams, T. (2017). Procedural generation in game design. CRC Press.

Smith, G., Whitehead, J., & Mateas, M. (2010). Tanagra: A mixed-initiative level de-
sign tool. Proceedings of the Fifth International Conference on the Foundations
of Digital Games, 209-216.

Stout, M. (2012). Learning from the masters: Level design in the legend of zelda [https:
//www.gamedeveloper.com/design /learning-from-the-masters-level-design-in-
i-the-legend-of-zelda-i-, Last accessed on 2023-06-01].

Sturtevant, N., Smith, G., & Togelius, J. (2015). Making things up: The power and
peril of pcg. Youtube. https://youtu.be/B11RIHZsmGE

Subset Games. (2012). Ftl: Faster than light [Steam].

SweetJohnnyCage - Narrated Guides & Walkthroughs. (2020). Eastern palace walk-
through - the legend of zelda a link to the past. Retrieved May 28, 2023, from
%5Curl%7Bhttps://youtu.be/eBzen_gghek%7D

Tekinbas, K. S., & Zimmerman, E. (2003). Rules of play: Game design fundamentals.
MIT press.

Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2010). Search-based pro-
cedural content generation. Applications of Fvolutionary Computation: EvoAp-
plicatons 2010: EvoCOMPLEX, EvoGAMES, FEvolASP, EvoINTELLIGENCE,
EvoNUM, and EvoSTOC, Istanbul, Turkey, April 7-9, 2010, Proceedings, Part
1, 141-150.

Totten, C. W. (2014). An architectural approach to level design. CRC Press.

Totten, C. W. (2017). Level design: Processes and experiences. CRC Press.

Williams, N. (2015). An investigation into dungeon generation.

Zhou, Z., & Guzdial, M. (2021). Toward co-creative dungeon generation via transfer
learning. Proceedings of the 16th International Conference on the Foundations
of Digital Games, 1-9.

64

